Skip to main content
Log in

Wheat Gluten Plasticized with Its Own Hydrolysate

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Proteins can be made into polymer materials through plasticization. Here, wheat gluten is plasticized with its own tryptic hydrolysate. Wheat gluten hydrolysate largely consists of small molecular weight peptides as measured by size exclusion chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Elastic modulus decreases 3.8 times at hydrolyzed wheat gluten contents of 0.2–0.4 mass fraction. Differential scanning calorimetry shows a 100 °C reduction of the glass transition temperature from 0.0 to 0.5 mass fraction hydrolyzed wheat gluten content. Compared to glycerol, hydrolyzed wheat gluten is not as efficient a plasticizer. However, hydrolyzed wheat gluten has a similar effect on the protein structure as glycerol as measured with Fourier transform infrared (FTIR) spectroscopy. The glass transition temperature is found to strongly correlate with the state of glutamine and proline in the protein and FTIR results can be used to predict the glass transition temperature at a given plasticization level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  2. Vincent J (1990) Structural biomaterials. Princeton University Press, Princeton

    Google Scholar 

  3. Barone JR, Schmidt WF, Liebner CFE (2005) J Appl Polym Sci 97:1644

    Article  CAS  Google Scholar 

  4. Athamneh A, Griffin M, Whaley M, Barone JR (2008) Biomacromolecules 9:3181

    Article  CAS  Google Scholar 

  5. Galietta G, Di Gioia L, Guilbert S, Cuq B (1998) J Dairy Sci 81:3123

    Article  CAS  Google Scholar 

  6. Redl A, Morel MH, Bonicel J, Vergnes B, Guilbert S (1999) Cereal Chem 76:361

    Article  CAS  Google Scholar 

  7. DiGioia L, Guilbert S (1999) J Agric Food Chem 47:1254

    Article  CAS  Google Scholar 

  8. Gennadios A, Weller CL, Hanna MA, Froning GW (1996) J Food Sci 61:585

    Article  CAS  Google Scholar 

  9. Gao C, Stading M, Wellner N, Parker ML, Noel TR, Mills ENC, Belton PS (2006) J Agric Food Chem 54:4611

    Article  CAS  Google Scholar 

  10. Reddy N, Chen L, Yang Y (2013) Ind Crops Prod 43:159

    Article  CAS  Google Scholar 

  11. Jagadeesh D, Reddy DJP, Rajulu AV (2011) J Polym Environ 19:248

    Article  CAS  Google Scholar 

  12. Krochta JM (2002) In: Gennadios A (ed) Protein-based films and coatings. CRC Press LLC, Boca Raton, pp 1–41

    Google Scholar 

  13. Barone JR, Schmidt WF, Gregoire NT (2006) J Appl Polym Sci 100:1432

    Article  CAS  Google Scholar 

  14. Galus S, Mathieu H, Lenart A, Debeaufort F (2012) Innov Food Sci Emerg Technol 16:148

    Article  CAS  Google Scholar 

  15. Gontard N, Guilbert S, Cuq J-L (1993) J Food Sci 58:206

    Article  CAS  Google Scholar 

  16. Guillard V, Chevillard A, Gastaldi E, Gontard N, Angellier-Coussy H (2013) Eur Polym J 49:1337

    Article  CAS  Google Scholar 

  17. Kim KM, Marx DB, Weller CL, Hanna MA (2003) J Am Oil Chem Soc 80:71

    Article  CAS  Google Scholar 

  18. Sothornvit R, Olsen CW, McHugh TH, Krochta JM (2003) J Food Sci 68:1985

    Article  CAS  Google Scholar 

  19. Barone JR, Dangaran KL, Schmidt WF (2006) J Agric Food Chem 54:5393

    Article  CAS  Google Scholar 

  20. Barone JR, Dangaran KL, Schmidt WF (2007) J Appl Polym Sci 106:1518

    Article  CAS  Google Scholar 

  21. Wang J-S, Zhao M-M, Zhao Q-Z, Bao Y, Jiang Y-M (2007) J Food Sci 72:C103

    Article  CAS  Google Scholar 

  22. Wieser H (2007) Food Microbiol 24:115

    Article  CAS  Google Scholar 

  23. Gontard N, Guilbert S, Cuq J-L (1992) J Food Sci 57:190

    Article  CAS  Google Scholar 

  24. Noel TR, Parker R, Ring SG, Tatham AS (1995) Int J Biol Macromol 17:81

    Article  CAS  Google Scholar 

  25. Micard V, Guilbert S (2000) Int J Biol Macromol 27:229

    Article  CAS  Google Scholar 

  26. Pouplin M, Redl A, Gontard N (1999) J Agric Food Chem 47:538

    Article  CAS  Google Scholar 

  27. Di Gioia L, Guilbert S (1999) J Agric Food Chem 47:1254

    Article  Google Scholar 

  28. Irissin-Mangata J, Bauduin G, Boutevin B, Gontard N (2001) Eur Polym J 37:1533

    Article  CAS  Google Scholar 

  29. Sanchez AC, Popineau Y, Mangavel C, Larre C, Gueguen J (1998) J Agric Food Chem 46:4539

    Article  CAS  Google Scholar 

  30. Dicharry RN, Ye P, Saha G, Waxman E, Asandei AD, Parnas RS (2006) Biomacromolecules 7:2837

    Article  CAS  Google Scholar 

  31. Dong J, Asandei AD, Parnas RS (2010) Polymer 51:3164

    Article  CAS  Google Scholar 

  32. Woerdeman DL, Veraverbeke WS, Parnas RS, Johnson D, Delcour JA, Verpoest I, Plummer CJG (2004) Biomacromolecules 5:1262

    Article  CAS  Google Scholar 

  33. Budhavaram NK, Miller JA, Shen Y, Barone JR (2010) J Agric Food Chem 58:9549

    Article  CAS  Google Scholar 

  34. Ridgley DM, Ebanks KC, Barone JR (2011) Biomacromolecules 12:3770

    Article  CAS  Google Scholar 

  35. Ridgley DM, Claunch EC, Barone JR (2012) Soft Matter 8:10298

    Article  CAS  Google Scholar 

  36. Athamneh A, Barone JR (2009) Smart Mater Struct 18:104024

    Article  Google Scholar 

  37. Barone JR (2009) J Polym Environ 17:143

    Article  CAS  Google Scholar 

  38. Barone JR, Medynets M (2007) Carbohydr Polym 69:554

    Article  CAS  Google Scholar 

  39. Batey IL (1985) J Appl Biochem 7:423

    CAS  Google Scholar 

  40. Barone JR, Medynets M (2007) Carbohydr Polym 69:554

    Article  CAS  Google Scholar 

  41. Krimm S, Bandekar J (1986) In: Anfinsen CB, Edsall JT, Richards FM (eds) Advances in protein chemistry. Academic Press Inc, Orlando, pp 181–364

    Google Scholar 

  42. Gunzler H, Gremlich H-U (2002) IR spectroscopy. Wiley-VCH, Weinheim

    Google Scholar 

  43. Barth A (2000) Prog Biophys Mol Biol 74:141

    Article  CAS  Google Scholar 

  44. Perutz MF, Johnson T, Suzuki M, Finch JT (1994) Proc Natl Acad Sci USA 91:5355

    Article  CAS  Google Scholar 

  45. Sikorski P, Atkins E (2005) Biomacromolecules 6:425

    Article  CAS  Google Scholar 

Download references

Acknowledgments

C.S. Tuck and A. Latham were participants in the NSF-REU Site: Bioprocess Engineering for Sustainability at Virginia Tech. Funding from NSF-EEC-1156645 is greatly appreciated. Special thank you to Zhiyuan Lin for the DSC experiments and to Chip Frazier for use of his thermal analysis laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin R. Barone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuck, C.S., Latham, A., Lee, P.W. et al. Wheat Gluten Plasticized with Its Own Hydrolysate. J Polym Environ 22, 430–438 (2014). https://doi.org/10.1007/s10924-014-0696-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-014-0696-1

Keywords

Navigation