Skip to main content
Log in

A Review on Application of Acoustic Emission Testing During Additive Manufacturing

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Additive manufacturing transforms the industry by integrating innovative and intelligent technology, resulting in less material waste and faster prototyping. However, qualitative ambiguities are a significant barrier to digital fabrication methods to manufacture essential parts that require great precision and accuracy. However, qualitative ambiguities are a substantial barrier to digital fabrication methods to manufacture crucial parts that demand higher precision and accuracy. As a result, process monitoring techniques during production are becoming increasingly important. Acoustic emission testing is a prominent nondestructive testing approach that has demonstrated its capacity to detect and locate minute and internal developing cracks, allowing for real-time damage monitoring. This study briefly discussed different additive manufacturing processes, their influential parameters, and monitoring techniques, with particular emphasis on acoustic emission techniques. This study provides extensive recommendations for process monitoring of fused deposition modeling, powder bed fusion and directed energy deposition methods using acoustic emission testing. The different approaches used for handling the acoustic emission data and the effect of defects on acoustic emission signal parameters are also reviewed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Data will be made available on request.

Abbreviations

CFSFDP:

Clustering by fast search and finding of density peaks

CNN:

Convolutional neural network

DBN:

Deep belief network

DLP:

Digital light processing

EEMD:

Ensemble empirical mode decomposition

FFT:

Fast Fourier transform

FDA:

Fisher discriminant analysis

GMM:

Gaussian mixture model

HHT:

Hilbert-Huang transform

HSMM:

Hidden semi-Markova model

LDA:

Linear discriminant analysis

LOM:

Laminated object manufacturing

LR:

Logistic regression

LSTM:

Long short-term memory

MLP:

Multilayer perceptron

PCA:

Principal component analysis

PLA:

Polylactic acid

PP:

Polypropylene

RBF:

Radial basis function

RF:

Random forest

SOM:

Self-organizing maps

SCNN:

Spectral convolutional neural network

SLA:

Stereolithography

SLM:

Selective laser melting

ST-FFT:

Short-time fast Fourier transform

STFT:

Short-time Fourier transform

SVM:

Support vector machine

RL:

Reinforcement learning

ResNet:

Residual networks

t-SNE:

T-Distributed Stochastic Neighbour Embedding

UAM:

Ultrasonic additive manufacturing

VAE:

Variational autoencoders

References

  1. Standard, A.: ISO/ASTM 52900: 2015 additive manufacturing-general principles-terminology. ASTM F2792-10e1 (2012)

  2. Giridhar, G., Prem, P.R., Kumar, S.: Development of concrete mixes for 3D printing using simple tools and techniques. Sadhana 48(1), 16 (2023). https://doi.org/10.1007/s12046-022-02069-w

    Article  Google Scholar 

  3. Khlybov, A.A., Uglov, A.L., Bakiev, T.A., Ryabov, D.A.: Assessment of the degree of damage in structural materials using the parameters of structural-acoustic noise. Nondestr. Test. Eval. (2022). https://doi.org/10.1080/10589759.2022.2126470

    Article  Google Scholar 

  4. https://www.marketsandmarkets.com/Market-Reports/3d-printing-market-1276.html

  5. AbouelNour, Y., Gupta, N.: In-situ monitoring of sub-surface and internal defects in additive manufacturing: a review. Mater. Des. (2022). https://doi.org/10.1016/j.matdes.2022.111063

    Article  Google Scholar 

  6. Kim, H., Lin, Y., Tseng, T.-L.B.: A review on quality control in additive manufacturing. Rapid Prototyping J. (2018). https://doi.org/10.1108/RPJ-03-2017-0048

    Article  Google Scholar 

  7. Tapia, G., Elwany, A.: A review on process monitoring and control in metal-based additive manufacturing. J. Manuf. Sci. Eng. (2014). https://doi.org/10.1115/1.4028540

    Article  Google Scholar 

  8. Aleshin, N.P., Grigor’Ev, M.V., Shchipakov, N.A., Prilutskii, M.A., Murashov, V.V.: Using nondestructive testing methods for in-production quality control of additive manufactured parts. Russ. J. Nondestr. Test. 52, 532–7 (2016)

    Article  Google Scholar 

  9. Lopez, A., Bacelar, R., Pires, I., Santos, T.G., Sousa, J.P., Quintino, L.: Non-destructive testing application of radiography and ultrasound for wire and arc additive manufacturing. Addit. Manuf. 21, 298–306 (2018).

    Google Scholar 

  10. Bamberg, J., Zenzinger, G., Ladewig, A.: In-process control of selective laser melting by quantitative optical tomography. In 19th World Conference on Non-Destructive Testing (pp. 1–8) (2016, June). https://www.ndt.net/article/wcndt2016/papers/th1b1.pdf.

  11. Ramezani, M.B., Yahaghi, E., Nohekhan, M.: An empirical study of electrode degradation in gliding arc discharge. Russ. J. Nondestr. Test. 58(7), 632–642 (2022). https://doi.org/10.1134/S106183092207004X

    Article  Google Scholar 

  12. Balageas, D., Maldague, X., Burleigh, D., Vavilov, V.P., Oswald-Tranta, B., Roche, J.M., Carlomagno, G.M.: Thermal (IR) and other NDT techniques for improved material inspection. J. Nondestr. Eval. 35, 1–17 (2016). https://doi.org/10.1007/s10921-015-0331-7

    Article  Google Scholar 

  13. Powierza, B., Stelzner, L., Oesch, T., Gollwitzer, C., Weise, F., Bruno, G.: Water migration in one-side heated concrete: 4D in-situ CT monitoring of the moisture-clog-effect. J. Nondestr. Eval. 38, 1–11 (2019). https://doi.org/10.1007/s10921-018-0552-7

    Article  Google Scholar 

  14. Park, S., Alnuaimi, H., Hayes, A., Sitkiewicz, M., Amjad, U., Muralidharan, K., Kundu, T.: Nonlinear acoustic technique for monitoring porosity in additively manufactured parts. J. Nondestr. Eval. Diagnostics Prognostics Eng. Syst. 5(2), 021008 (2022)

    Article  Google Scholar 

  15. Azamfirei, V., Psarommatis, F., Lagrosen, Y.: Application of automation for in-line quality inspection, a zero-defect manufacturing approach. J. Manuf. Syst. 67, 1–22 (2023).

    Article  Google Scholar 

  16. Diot, G., Koudri-David, A., Walaszek, H., Guégan, S., Flifla, J.: Non-destructive testing of porosity in laser welded aluminium alloy plates: laser ultrasound and frequency-bandwidth analysis. J. Nondestr. Eval. 32, 354–361 (2013). https://doi.org/10.1007/s10921-013-0189-5

    Article  Google Scholar 

  17. Eslamlou, A.D., Ghaderiaram, A., Schlangen, E., Fotouhi, M.: A review on non-destructive evaluation of construction materials and structures using magnetic sensors. Constr. Build. Mater. 397, 132460 (2023)

    Article  Google Scholar 

  18. Gupta, M., Khan, M.A., Butola, R., Singari, R.M.: Advances in applications of non-destructive testing (NDT): a review. Adv. Mater. Process. Technol. 8(2), 2286–2307 (2022). https://doi.org/10.1080/2374068X.2021.1909332

    Article  Google Scholar 

  19. Naidjate, M., Helifa, B., Feliachi, M., Lefkaier, I.K., Heuer, H., Schulze, M.: A smart eddy current sensor dedicated to the nondestructive evaluation of carbon fibers reinforced polymers. Sensors 17(9), 1996 (2017).

    Article  Google Scholar 

  20. Goszczyńska, B.: Analysis of the process of crack initiation and evolution in concrete with acoustic emission testing. Arch. Civil Mech. Eng. 14(1), 134–143 (2014). https://doi.org/10.1016/j.acme.2013.06.002

    Article  Google Scholar 

  21. Prem, P.R., Murthy, A.R., Verma, M.: Theoretical modelling and acoustic emission monitoring of RC beams strengthened with UHPC. Constr. Build. Mater. 158, 670–682 (2018). https://doi.org/10.1016/j.conbuildmat.2017.10.063

    Article  Google Scholar 

  22. Han, Z., Luo, H., Sun, C., Li, J., Papaelias, M., Davis, C.: Acoustic emission study of fatigue crack propagation in extruded az31 magnesium alloy. Mater. Sci. Eng. A 597, 270–278 (2014). https://doi.org/10.1016/j.msea.2013.12.083

    Article  Google Scholar 

  23. Drissi-Daoudi, R., Masinelli, G., de Formanoir, C., Wasmer, K., Jhabvala, J., Logé, R.E.: Acoustic emission for the prediction of processing regimes in laser powder bed fusion, and the generation of processing maps. Addit. Manuf. 67, 103484 (2023). https://doi.org/10.1016/j.addma.2023.103484

    Article  Google Scholar 

  24. Wu, S., Shan, Z., Chen, K., Wu, X., Zou, D., Wang, S., Xiong, J.: Investigation of bending performance of printed continuous carbon fiber reinforced polylactic acid using acoustic emission. Polym. Compos. 44(2), 863–872 (2023). https://doi.org/10.1002/pc.27137

    Article  Google Scholar 

  25. Li, F., Yu, Z., Yang, Z., Shen, X.: Real-time distortion monitoring during fused deposition modeling via acoustic emission. Struct. Health Monit. 19(2), 412–423 (2020). https://doi.org/10.1016/j.jmsy.2018.04.003

    Article  Google Scholar 

  26. Yue, J.G., Beskos, D.E., Feng, C., Wu, K.: Hardened fracture characteristics of printed concrete using acoustic emission monitoring technique. Constr. Build. Mater. 361, 129684 (2022). https://doi.org/10.1016/j.conbuildmat.2022.129684

    Article  Google Scholar 

  27. Kaliyavaradhan, S.K., Ambily, P.S., Prem, P.R., Ghodke, S.B.: Test methods for 3D printable concrete. Autom. Constr. 142, 104529 (2022)

    Article  Google Scholar 

  28. Ravichandran, D., Prem, P.R., Kaliyavaradhan, S.K., Ambily, P.S.: Influence of fibers on fresh and hardened properties of ultra high-performance concrete (UHPC)—a review. J. Build. Eng. 57, 104922 (2022)

    Article  Google Scholar 

  29. Shamseer, L., Moher, D., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L.A.: Preferred reporting items for systematic review and meta-analysis protocols (prisma-p) 2015: elaboration and explanation. Bmj (2015). https://doi.org/10.1136/bmj.g7647

    Article  Google Scholar 

  30. Kannivel, S., Vellayaraj, A., Kolimi, I., Thomas, J.: Effect of thickness on indentation response and tensile loading behaviour of glass/epoxy laminates under acoustic emission monitoring. Nondestr. Test. Eval. 36(2), 158–175 (2021). https://doi.org/10.1080/10589759.2019.1709456

    Article  Google Scholar 

  31. Vidya Sagar, R., Basu, D.J.: Damage assessment of reinforced concrete structures under elevated-amplitude cyclic loading using sentry values based on acoustic emission testing. Nondestr. Test. Eval. (2022). https://doi.org/10.1080/10589759.2022.2144852

    Article  Google Scholar 

  32. Prem, P.R., Verma, M., Ambily, P.: Damage characterization of reinforced concrete beams under different failure modes using acoustic emission. In: Structures, Vol. 30, pp. 174–187 (2021). Elsevier. https://doi.org/10.1016/j.istruc.2021.01.007

  33. Grosse, C.U., Ohtsu, M., Aggelis, D.G., Shiotani, T.: Acoustic Emission Testing: Basics for Research-Applications in Engineering. Springer (2021). https://books.google.co.in/books

  34. Wang, H., Li, B., Xuan, F.Z.: Acoustic emission for in situ process monitoring of selective laser melting additive manufacturing based on machine learning and improved variational modal decomposition. Int. J. Adv. Manuf. Technol. 122(5–6), 2277–2292 (2022). https://doi.org/10.1007/s00170-022-10032-6

    Article  Google Scholar 

  35. Xu, K., Lyu, J., Manoochehri, S.: In situ process monitoring using acoustic emission and laser scanning techniques based on machine learning models. J. Manuf. Process. 84, 357–374 (2022). https://doi.org/10.1016/j.jmapro.2022.10.002

    Article  Google Scholar 

  36. Liu, J., Kanwal, H., Tang, C., Hao, W.: Study on flexural properties of 3D printed lattice-reinforced concrete structures using acoustic emission and digital image correlation. Constr. Build. Mater. 333, 127418 (2022). https://doi.org/10.1016/j.conbuildmat.2022.127418

    Article  Google Scholar 

  37. He, J., Feng, X., Wang, X., Guan, X.: Fatigue performance and acoustic emission behaviour of remanufactured low-carbon steel made by wire and arc additive manufacturing. Int. J. Fatigue 165, 107190 (2022). https://doi.org/10.1016/j.ijfatigue.2022.107190

    Article  Google Scholar 

  38. Yoon, D.-J., Weiss, W.J., Shah, S.P.: Assessing damage in corroded reinforced concrete using acoustic emission. J. Eng. Mech. 126(3), 273–283 (2000). https://doi.org/10.1061/(ASCE)0733-9399(2000)126:3(273)

    Article  Google Scholar 

  39. Wang, S., Wang, H., Wang, D., Wang, J., Zhang, W., Hong, J., Gao, L.: AE source localization and imaging on cylindrical shell structures based on six-AE-sensor monitoring network and VTR focusing imaging. Nondestr. Test. Eval. 36(1), 35–61 (2021). https://doi.org/10.1080/10589759.2019.1692012

    Article  Google Scholar 

  40. Behnia, A., Chai, H.K., Shiotani, T.: Advanced structural health monitoring of concrete structures with the aid of acoustic emission. Constr. Build. Mater. 65, 282–302 (2014). https://doi.org/10.1016/j.conbuildmat.2014.04.103

    Article  Google Scholar 

  41. Acoustic Emission Sensors. Accessed on 15-Feburary-2022 https://www.vallen.de/wp-content/uploads/2019/03/sov.pdf.

  42. Physical Acoustic- World Leader in Acoustic Emission. https://www.physicalacoustics.com/sensors/. Accessed 12-Dec-2021

  43. Piezoelectric sensors group. http://www.fujicera.co.jp/en/product/ae/. Accessed 19 Jan-2022

  44. Physical Acoustic- World Leader in Acoustic Emission. https://www.physicalacoustics.com/preamplifiers/. Accessed 12 Dec-2021

  45. Grosse, C.U., Reinhardt, H.W., Finck, F.: Signal-based acoustic emission techniques in civil engineering. J. Mater. Civ. Eng. 15(3), 274–279 (2003). https://doi.org/10.1061/(ASCE)0899-1561(2003)15:3(274)

    Article  Google Scholar 

  46. Pomponi, E., Vinogradov, A.: A real-time approach to acoustic emission clustering. Mech. Syst. Signal Process. 40(2), 791–804 (2013). https://doi.org/10.1016/j.ymssp.2013.03.017

    Article  Google Scholar 

  47. Prem, P.R., Murthy, A.R.: Acoustic emission and flexural behaviour of RC beams strengthened with UHPC overlay. Constr. Build. Mater. 123, 481–492 (2016). https://doi.org/10.1016/j.conbuildmat.2016.07.033

    Article  Google Scholar 

  48. Jierula, A., Wang, S., Oh, T.M., Lee, J.W., Lee, J.H.: Detection of source locations in RC columns using machine learning with acoustic emission data. Eng. Struct. 246, 112992 (2021). https://doi.org/10.1016/j.engstruct.2021.112992

    Article  Google Scholar 

  49. Boczar, T., Borucki, S., Jancarczyk, D., Bernas, M., Kurtasz, P.: Application of selected machine learning techniques for identification of basic classes of partial discharges occurring in paper-oil insulation measured by acoustic emission technique. Energies 15(14), 5013 (2022). https://doi.org/10.3390/en15145013

    Article  Google Scholar 

  50. Saeedifar, M., Najafabadi, M.A., Zarouchas, D., Toudeshky, H.H., Jalalvand, M.: Clustering of interlaminar and intralaminar damages in laminated composites under indentation loading using Acoustic Emission. Composite B 144, 206–219 (2018). https://doi.org/10.1016/j.compositesb.2018.02.028

    Article  Google Scholar 

  51. Sun, J., Chen, X., Fu, Z., Lacidogna, G.: Damage pattern recognition and crack propagation prediction for crumb rubber concrete based on acoustic emission techniques. Appl. Sci. 11(23), 11476 (2021). https://doi.org/10.3390/app112311476

    Article  Google Scholar 

  52. Manson, G., Worden, K., Holford, K., Pullin, R.: Visualisation and dimension reduction of acoustic emission data for damage detection. J. Intell. Mater. Syst. Struct. 12(8), 529–536 (2001). https://doi.org/10.1177/10453890122145375

    Article  Google Scholar 

  53. Rippengill, S., Worden, K., Holford, K.M., Pullin, R.: Automatic classification of acoustic emission patterns. Strain 39(1), 31–41 (2003). https://doi.org/10.1046/j.1475-1305.2003.00041.x

    Article  Google Scholar 

  54. Ai, L., Soltangharaei, V., Ziehl, P.: Developing a heterogeneous ensemble learning framework to evaluate Alkali-silica reaction damage in concrete using acoustic emission signals. Mech. Syst. Signal Process. 172, 108981 (2022). https://doi.org/10.1016/j.ymssp.2022.108981

    Article  Google Scholar 

  55. Pichika, S.N., Meganaa, G., Rajasekharan, S.G., Malapati, A.: Multi-component fault classification of a wind turbine gearbox using integrated condition monitoring and hybrid ensemble method approach. Appl. Acoust. 195, 108814 (2022). https://doi.org/10.1016/j.apacoust.2022.108814

    Article  Google Scholar 

  56. Nguyen-Le, D.H., Tao, Q.B., Nguyen, V.H., Abdel-Wahab, M., Nguyen-Xuan, H.: A data-driven approach based on long short-term memory and hidden Markov model for crack propagation prediction. Eng. Fract. Mech. 235, 107085 (2020). https://doi.org/10.1016/j.engfracmech.2020.107085

    Article  Google Scholar 

  57. Guo, W., Wu, C., Ding, Z., Zhou, Q.: Prediction of surface roughness based on a hybrid feature selection method and long short-term memory network in grinding. Int. J. Adv. Manuf. Technol. 112, 2853–2871 (2021)

    Article  Google Scholar 

  58. Fu, W., Zhou, R., Guo, Z.: Automatic bolt tightness detection using acoustic emission and deep learning. In Structures (Vol. 55, pp. 1774–1782) (2023, September) Elsevier. https://doi.org/10.1016/j.istruc.2023.06.100

  59. Adeniji, D., Oligee, K., Schoop, J.: A novel approach for real-time quality monitoring in machining of aerospace alloy through acoustic emission signal transformation for DNN. J. Manuf. Mater. Process. 6(1), 18 (2022). https://doi.org/10.3390/jmmp6010018

    Article  Google Scholar 

  60. Pashmforoush, F., Khamedi, R., Fotouhi, M., Hajikhani, M., Ahmadi, M.: Damage classification of sandwich composites using acoustic emission technique and k-means genetic algorithm. J. Nondestr. Eval. 33(4), 481–492 (2014). https://doi.org/10.1007/s10921-014-0243-y

    Article  Google Scholar 

  61. Pashmforoush, F., Fotouhi, M., Ahmadi, M.: Acoustic emission-based damage classification of glass/polyester composites using harmony search k-means algorithm. J. Reinf. Plast. Compos. 31(10), 671–680 (2012). https://doi.org/10.1177/0731684412442257

    Article  Google Scholar 

  62. Kraljevski, I., Duckhorn, F., Tschöpe, C., Wolff, M.: Machine learning for anomaly assessment in sensor networks for NDT in aerospace. IEEE Sens. J. 21(9), 11000–11008 (2021). https://doi.org/10.1109/JSEN.2021.3062941

    Article  Google Scholar 

  63. Konig, F., Jacobs, G., Stratmann, A., Cornel, D.: Fault detection for sliding bearings using acoustic emission signals and machine learning methods. In IOP Conference Series: Materials Science and Engineering (Vol. 1097, No. 1, p. 012013) (2021, February). IOP Publishing. https://doi.org/10.1088/1757-899X/1097/1/012013

  64. Allen, R.: Automatic phase pickers: Their present use and future prospects. Bull. Seismol. Soc. Am. 72(6B), 225–242 (1982). https://doi.org/10.1785/BSSA07206B0225

    Article  Google Scholar 

  65. Kurz, J.H., Grosse, C.U., Reinhardt, H.-W.: Strategies for reliable automatic onset time picking of acoustic emissions and of ultrasound signals in concrete. Ultrasonics 43(7), 538–546 (2005). https://doi.org/10.1016/j.ultras.2004.12.005

    Article  Google Scholar 

  66. Jiang, J., Fu, Y.-F.: A short survey of sustainable material extrusion additive manufacturing. Aust. J. Mech. Eng. (2020). https://doi.org/10.1080/14484846.2020.1825045

    Article  Google Scholar 

  67. Ackland, D.C., Robinson, D., Redhead, M., Lee, P.V.S., Moskaljuk, A., Dimitroulis, G.: A personalized 3d-printed prosthetic joint replacement for the human temporomandibular joint: from implant design to implantation. J. Mech. Behav. Biomed. Mater. 69, 404–411 (2017). https://doi.org/10.1016/j.jmbbm.2017.01.048

    Article  Google Scholar 

  68. Anitha, R., Arunachalam, S., Radhakrishnan, P.: Critical parameters influencing the quality of prototypes in fused deposition modelling. J. Mater. Process. Technol. 118(1–3), 385–388 (2001). https://doi.org/10.1016/S0924-0136(01)00980-3

    Article  Google Scholar 

  69. Ahn, S.-H., Montero, M., Odell, D., Roundy, S., Wright, P.K.: Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyping J. (2002). https://doi.org/10.1108/13552540210441166

    Article  Google Scholar 

  70. Rao, P.K., Liu, J.P., Roberson, D., Kong, Z.J., Williams, C.: Online real- time quality monitoring in additive manufacturing processes using heterogeneous sensors. J. Manuf. Sci. Eng. (2015). https://doi.org/10.1115/1.4029823

    Article  Google Scholar 

  71. Baumann, F., Roller, D.: Vision based error detection for 3D printing processes. In: MATEC Web of Conferences, Vol. 59, p. 06003 (2016). EDP Sciences. https://doi.org/10.1051/matecconf/20165906003

  72. Yang, Z., Jin, L., Yan, Y., Mei, Y.: Filament breakage monitoring in fused deposition modelling using acoustic emission technique. Sensors 18(3), 749 (2018). https://doi.org/10.3390/s18030749

    Article  Google Scholar 

  73. Wu, H., Yu, Z., Wang, Y.: Real-time FDM machine condition monitoring and diagnosis based on acoustic emission and hidden semi-markov model. Int. J. Adv. Manuf. Technol. 90(5–8), 2027–2036 (2017). https://doi.org/10.1007/s00170-016-9548-6

    Article  Google Scholar 

  74. Lotrakul, P., San-Um, W., Takahashi, M.: The monitoring of three-dimensional printer filament feeding process using an acoustic emission sensor. In: Sustainability Through Innovation in Product Life Cycle Design, pp. 499–511. Springer (2017). doi: https://doi.org/10.1007/978-981-10-0471-1_34

  75. Wu, H., Wang, Y., Yu, Z.: In situ monitoring of FDM machine condition via acoustic emission. Int. J. Adv. Manuf. Technol. 84(5–8), 1483–1495 (2016). https://doi.org/10.1007/s00170-015-7809-4

    Article  Google Scholar 

  76. Li, H., Yu, Z., Li, F., Kong, Q., Tang, J.: Real-time polymer flow state monitoring during fused filament fabrication based on acoustic emission. J. Manuf. Syst. 62, 628–635 (2022). https://doi.org/10.1016/j.jmsy.2022.01.007

    Article  Google Scholar 

  77. Wu, H., Yu, Z., Wang, Y.: A new approach for online monitoring of additive manufacturing based on acoustic emission. In: International Manufacturing Science and Engineering Conference, vol. 49910, pp. 003–08013 (2016). American Society of Mechanical Engineers. https://doi.org/10.1115/MSEC2016-8551

  78. Liu, J., Hu, Y., Wu, B., Wang, Y.: An improved fault diagnosis approach for FDM process with acoustic emission. J. Manuf. Process. 35, 570–579 (2018). https://doi.org/10.1016/j.jmapro.2018.08.038

    Article  Google Scholar 

  79. Li, F., Yu, Z., Shen, X., Zhang, H.: Status recognition for fused deposition modeling manufactured parts based on acoustic emission. In: E3S Web of Conferences, vol. 95, p. 01005 (2019). EDP Sciences. https://doi.org/10.1051/e3sconf/20199501005

  80. Wu, H., Yu, Z., Wang, Y.: Experimental study of the process failure diagnosis in additive manufacturing based on acoustic emission. Measurement 136, 445–453 (2019). https://doi.org/10.1016/j.measurement.2018.12.067

    Article  Google Scholar 

  81. Yang, Z., Yan, W., Jin, L., Li, F., Hou, Z.: A novel feature representation method based on original waveforms for acoustic emission signals. Mech. Syst. Signal Process. 135, 106365 (2020)

    Article  Google Scholar 

  82. Barile, C., Casavola, C., Cazzato, A.: Acoustic emissions in 3D printed parts under mode in delamination test. Materials 11(9), 1760 (2018). https://doi.org/10.3390/ma11091760

    Article  Google Scholar 

  83. Yoon, J., He, D., Van Hecke, B.: A PHM approach to additive manufacturing equipment health monitoring, fault diagnosis, and quality control. In: Annual Conference of the PHM Society, Vol. 6 (2014). https://doi.org/10.36001/phmconf.2014.v6i1.2338

  84. Kim, J.S., Lee, C.S., Kim, S.-M., Lee, S.W.: Development of data-driven in-situ monitoring and diagnosis system of fused deposition modeling (FDM) process based on support vector machine algorithm. Int. J. Precis. Eng. Manuf. Green Technol. 5(4), 479–486 (2018). https://doi.org/10.1007/s40684-018-0051-4

    Article  Google Scholar 

  85. Nam, J., Jo, N., Kim, J.S., Lee, S.W.: Development of a health monitoring and diagnosis framework for fused deposition modeling process based on a machine learning algorithm. Proc. Inst. Mech. Eng. Part B 234(1–2), 324–332 (2020). https://doi.org/10.1177/0954405419855224

    Article  Google Scholar 

  86. Shevchik, S.A., Kenel, C., Leinenbach, C., Wasmer, K.: Acoustic emission for in situ quality monitoring in additive manufacturing using spectral convolutional neural networks. Addit. Manuf. 21, 598–604 (2018). https://doi.org/10.1016/j.addma.2017.11.012

    Article  Google Scholar 

  87. Calignano, F., Manfredi, D., Ambrosio, E.P., Biamino, S., Lombardi, M., Atzeni, E., Salmi, A., Minetola, P., Iuliano, L., Fino, P.: Overview on additive manufacturing technologies. Proc. IEEE 105(4), 593–612 (2017). https://doi.org/10.1109/JPROC.2016.2625098

    Article  Google Scholar 

  88. Khairallah, S.A., Anderson, A.T., Rubenchik, A., King, W.E.: Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 108, 36–45 (2016). https://doi.org/10.1016/j.actamat.2016.02.014

    Article  Google Scholar 

  89. McCann, R., Obeidi, M. A., Hughes, C., McCarthy, É., Egan, D. S., Vijayaraghavan, R. K.,. & Brabazon, D.: In-situ sensing, process monitoring and machine control in Laser Powder Bed Fusion: A review. Additive Manufacturing, 45, 102058 (2021) https://www.sciencedirect.com/science/article/pii/S2214860421002232.

  90. Zhang, M., Sun, C.-N., Zhang, X., Goh, P.C., Wei, J., Hardacre, D., Li, H.: Fatigue and fracture behaviour of laser powder bed fusion stainless steel 316L: Influence of processing parameters. Mater. Sci. Eng., A 703, 251–261 (2017). https://doi.org/10.1016/j.msea.2017.07.071

    Article  Google Scholar 

  91. Wuriti, G.S., Chattopadhyaya, S., Thomas, T.: Acoustic emission signal characteristics of maraging steel 250 pressure vessel during a hydraulic qualification test. Nondestructive Testing and Evaluation 37(1), 100–114 (2022). https://doi.org/10.1080/10589759.2021.1909013

    Article  Google Scholar 

  92. Ghayoomi Mohammadi, M.: Acoustic emission monitoring of the powder bed fusion process with machine learning approach. PhD thesis (2021). http://hdl.handle.net/11375/27064

  93. Shevchik, S.A., Masinelli, G., Kenel, C., Leinenbach, C., Wasmer, K.: Deep learning for in situ and real-time quality monitoring in additive manufacturing using acoustic emission. IEEE Trans. Industr. Inf. 15(9), 5194–5203 (2019). https://doi.org/10.1109/TII.2019.2910524

    Article  Google Scholar 

  94. Wasmer, K., Kenel, C., Leinenbach, C., Shevchik, S.: In situ and real- time monitoring of powder-bed am by combining acoustic emission and artificial intelligence. In: International Conference on Additive Manufacturing in Products and Applications, pp. 200–209 (2017). Springer. https://doi.org/10.1007/978-3-319-66866-6_20

  95. Wasmer, K., Le-Quang, T., Meylan, B., Shevchik, S.: In situ quality monitoring in AM using acoustic emission: A reinforcement learning approach. J. Mater. Eng. Perform. 28(2), 666–672 (2019). https://doi.org/10.1007/s11665-018-3690-2

    Article  Google Scholar 

  96. Kratochvilova, V., Vlasic, F., Mazal, P., Palousek, D.: Fatigue behaviour evaluation of additively and conventionally produced materials by acoustic emission method. Procedia Structural Integrity 5, 393–400 (2017). https://doi.org/10.1016/j.prostr.2017.07.187

    Article  Google Scholar 

  97. Eschner, N., Weiser, L., Hafner, B., Lanza, G.: Development of an acoustic process monitoring system for selective laser melting (SLM). In: 2018 International Solid Freeform Fabrication Symposium (2018). University of Texas at Austin. https://doi.org/10.26153/tsw/17205

  98. Eschner, N., Weiser, L., Hafner, B., Lanza, G.: Classification of specimen density in laser powder bed fusion (L-PBF) using in-process structure- borne acoustic process emissions. Addit. Manuf. 34, 101324 (2020). https://doi.org/10.1016/j.addma.2020.101324

    Article  Google Scholar 

  99. Pandiyan, V., Drissi-Daoudi, R., Shevchik, S., Masinelli, G., Log´e, R., Wasmer, K.: Analysis of time, frequency and time-frequency domain features from acoustic emissions during laser powder-bed fusion process. Procedia CIRP 94, 392–397 (2020). doi: https://doi.org/10.1016/j.procir.2020.09.152

  100. Ye, D., Hong, G.S., Zhang, Y., Zhu, K., Fuh, J.Y.H., et al.: Defect detection in selective laser melting technology by acoustic signals with deep belief networks (2018). https://doi.org/10.1007/s00170-018-17280

    Article  Google Scholar 

  101. Mohammadi, M.G., Elbestawi, M.: Real time monitoring in L-PBF using a machine learning approach. Procedia Manuf. 51, 725–731 (2020). https://doi.org/10.1016/j.promfg.2020.10.102

    Article  Google Scholar 

  102. Mohammadi, M.G., Mahmoud, D., Elbestawi, M.: On the application of machine learning for defect detection in L-PBF additive manufacturing. Opt. Laser Technol. 143, 107338 (2021). https://doi.org/10.1016/j.optlastec.2021.107338

    Article  Google Scholar 

  103. Ye, D.S., Fuh, Y., Zhang, Y., Hong, G., Zhu, K.P.: Defects recognition in selective laser melting with acoustic signals by SVM based on feature reduction. In: IOP Conference Series: Materials Science and Engineering, vol. 436, p. 012020 (2018). IOP Publishing. https://doi.org/10.1088/1757-899X/436/1/012020

  104. Drissi-Daoudi, R., Pandiyan, V., Logé, R., Shevchik, S., Masinelli, G., Ghasemi-Tabasi, H., Parrilli, A., Wasmer, K.: Differentiation of materials and laser powder bed fusion processing regimes from airborne acoustic emission combined with machine learning. Virtual Phys. Prototyping (2022). https://doi.org/10.1080/17452759.2022.2028380

    Article  Google Scholar 

  105. Pandiyan, V., Drissi-Daoudi, R., Shevchik, S., Masinelli, G., Le-Quang, T., Logé, R., Wasmer, K.: Semi-supervised monitoring of laser powder bed fusion process based on acoustic emissions. Virtual Phys. Prototyping 16(4), 481–497 (2021). https://doi.org/10.1080/17452759.2021.1966166

    Article  Google Scholar 

  106. Prem, P.R., Murthy, A.R.: Acoustic emission monitoring of reinforced concrete beams subjected to four-point-bending. Applied Acoustics 117, 28–38 (2017).: Acoustic emission monitoring of reinforced concrete beams subjected to four-point bending. Applied Acoustics 117, 28–38 (2017). https://doi.org/10.1016/j.apacoust.2016.08.006

  107. Kouprianoff, D., Luwes, N., Yadroitsava, I., Yadroitsev, I.: Acoustic emission technique for online detection of fusion defects for single tracks during metal laser powder bed fusion. In: Solid Freeform Fabrication Symposium, University of Texas at Austin (2018). https://hdl.handle.net/2152/90283

  108. Barile, C., Casavola, C., Moramarco, V., Vimalathithan, P.K.: A comprehensive study of mechanical and acoustic properties of selective laser melting material. Arch. Civ. Mech. Eng. 20(1), 1–11 (2020). https://doi.org/10.26153/tsw/17204

  109. Plotnikov, Y., Henkel, D., Burdick, J., French, A., Sions, J., Bourne, K.: Infrared-assisted acoustic emission process monitoring for additive manufacturing. In: AIP Conference Proceedings, vol. 2102, p. 020006 (2019). AIP Publishing LLC. https://doi.org/10.1063/1.5099710

  110. Zhang, H., Li, C., Xu, M., Dai, W., Kumar, P., Liu, Z., Li, Z., Zhang, Y.: The fatigue performance evaluation of additively manufactured 304L austenitic stainless steels. Mater. Sci. Eng. A 802, 140640 (2021). https://doi.org/10.1016/j.msea.2020.140640

    Article  Google Scholar 

  111. Sing, S., Tey, C., Tan, J., Huang, S., Yeong, W.Y.: 3D printing of metals in rapid prototyping of biomaterials: Techniques in additive manufacturing. In: Rapid Prototyping of Biomaterials, pp. 17–40. Elsevier (2020). https://doi.org/10.1016/B978-0-08-102663-2.00002-2

  112. Ahn, D.-G.: Directed energy deposition (DED) process: State of the art. Int. J. Precis. Eng. Manuf. Green Technol. 8(2), 703–742 (2021). https://doi.org/10.1007/s40684-020-00302-7

    Article  Google Scholar 

  113. Dass, A., Moridi, A.: State of the art in directed energy deposition: From additive manufacturing to materials design. Coatings 9(7), 418 (2019). https://doi.org/10.3390/coatings9070418

    Article  Google Scholar 

  114. Saboori, A., Aversa, A., Marchese, G., Biamino, S., Lombardi, M., Fino, P.: Application of directed energy deposition-based additive manufacturing in repair. Appl. Sci. 9(16), 3316 (2019). https://doi.org/10.3390/app9163316

    Article  Google Scholar 

  115. Svetlizky, D., Das, M., Zheng, B., Vyatskikh, A.L., Bose, S., Bandyopadhyay, A., Schoenung, J.M., Lavernia, E.J., Eliaz, N.: Directed energy deposition (ded) additive manufacturing: physical characteristics, defects, challenges and applications. Mater. Today 49, 271–295 (2021). https://doi.org/10.1016/j.mattod.2021.03.020

    Article  Google Scholar 

  116. Hu, Y., Cong, W.: A review on laser deposition-additive manufacturing of ceramics and ceramic reinforced metal matrix composites. Ceram. Int. 44(17), 20599–20612 (2018). https://doi.org/10.1016/j.ceramint.2018.08.083

    Article  Google Scholar 

  117. Liu, Z., Kim, H., Liu, W., Cong, W., Jiang, Q., Zhang, H.: Influence of energy density on macro/micro structures and mechanical properties of as-deposited Inconel 718 parts fabricated by laser engineered net shaping. J. Manuf. Process. 42, 96–105 (2019). https://doi.org/10.1016/j.jmapro.2019.04.020

    Article  Google Scholar 

  118. Eo, D.-R., Park, S.-H., Cho, J.-W.: Controlling inclusion evolution behaviour by adjusting flow rate of shielding gas during direct energy deposition of AISI 316 L. Addit. Manuf. 33, 101119 (2020). https://doi.org/10.1016/j.addma.2020.101119

    Article  Google Scholar 

  119. Attar, H., Ehtemam-Haghighi, S., Kent, D., Wu, X., Dargusch, M.S.: Comparative study of commercially pure titanium produced by laser engineered net shaping, selective laser melting and casting processes. Mater. Sci. Eng. A 705, 385–393 (2017). https://doi.org/10.1016/j.msea.2017.08.103

    Article  Google Scholar 

  120. Carroll, B.E., Palmer, T.A., Beese, A.M.: Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing. Acta Mater. 87, 309–320 (2015). https://doi.org/10.1016/j.actamat.2014.12.054

    Article  Google Scholar 

  121. Gaja, H., Liou, F.: Defects monitoring of laser metal deposition using acoustic emission sensor. Int. J. Adv. Manuf. Technol. 90(1–4), 561–574 (2017). https://doi.org/10.1007/s00170-016-9366-x

    Article  Google Scholar 

  122. Milewski, J., Lewis, G., Thoma, D., Keel, G., Nemec, R., Reinert, R.: Directed light fabrication of a solid metal hemisphere using 5-axis powder deposition. J. Mater. Process. Technol. 75(1–3), 165–172 (1998). https://doi.org/10.1016/S0924-0136(97)00321-X

    Article  Google Scholar 

  123. Wu, X., Liang, J., Mei, J., Mitchell, C., Goodwin, P., Voice, W.: Microstructures of laser-deposited Ti–6Al–4V. Mater. Des. 25(2), 137–144 (2004). https://doi.org/10.1016/j.matdes.2003.09.009

    Article  Google Scholar 

  124. Wang, L., Felicelli, S.D., Craig, J.E.: Experimental and numerical study of the lens rapid fabrication process. J. Manuf. Sci. Eng. (2009). https://doi.org/10.1115/1.3173952

    Article  Google Scholar 

  125. Grad, L., Kralj, V.: On line monitoring of arc welding process using acoustic signals (1996)

  126. Grad, L., Grum, J., Polajnar, I., Slabe, J.M.: Feasibility study of acoustic signals for on-line monitoring in short circuit gas metal arc welding. Int. J. Mach. Tools Manuf 44(5), 555–561 (2004). https://doi.org/10.1016/j.ijmachtools.2003.10.016

    Article  Google Scholar 

  127. Haneef, T.K., Chakraborty, G., Rejeesh, R., Mukhopadhyay, C.K., Albert, S.K.: Characterisation of hydrogen assisted cracking in modified 9Cr-1Mo steel welds using acoustic emission non destructive technique. Nondestr. Test. Eval. 36(6), 692–708 (2021). https://doi.org/10.1080/10589759.2021.1889547

    Article  Google Scholar 

  128. Gorman, M.R.: Some connections between AE testing of large structures and small samples. Nondestr. Test. Eval. 14(1–2), 89–104 (1998). https://doi.org/10.1080/10589759808953044

    Article  Google Scholar 

  129. Liang, Z., Jinglong, L., Yi, L., Jingtao, H., Chengyang, Z., Jie, X., Dong, C.: Characteristics of metal droplet transfer in wire-arc additive manufacturing of aluminium alloy. Int. J. Adv. Manuf. Technol. 99(5), 1521–1530 (2018). https://doi.org/10.1007/s00170-018-2604-7

    Article  Google Scholar 

  130. Hauser, T., Reisch, R.T., Kamps, T., Kaplan, A.F., Volpp, J.: Acoustic emissions in directed energy deposition processes. Int. J. Adv. Manuf. Technol. (2022). https://doi.org/10.1007/s00170-021-08598-8

    Article  Google Scholar 

  131. Taheri, H., Koester, L.W., Bigelow, T.A., Faierson, E.J., Bond, L.J.: In situ additive manufacturing process monitoring with an acoustic technique: clustering performance evaluation using k-means algorithm. J. Manuf. Sci. Eng. (2019). https://doi.org/10.1115/1.4042786

    Article  Google Scholar 

  132. Oppenheim, A. V.: Discrete-time signal processing. Pearson Education India (1999). https://books.google.co.in/books

  133. Kumar, J., Ahmad, S., Mukhopadhyay, C.K., Jayakumar, T., Kumar, V.: Acoustic emission studies for characterization of fatigue crack growth behavior in HSLA Steel. Nondestructive Test. Eval. 31(1), 77–96 (2016). https://doi.org/10.1080/10589759.2015.1070850

    Article  Google Scholar 

  134. Hossain, M.S., Taheri, H.: In-situ process monitoring for metal additive manufacturing through acoustic techniques using wavelet and convolutional neural network (CNN). Int. J. Adv. Manuf. Technol. 116(11), 3473–3488 (2021). https://doi.org/10.1007/s00170-021-07721-z

    Article  Google Scholar 

  135. Koester, L.W., Taheri, H., Bond, L.J., Faierson, E.J.: Acoustic monitoring of additive manufacturing for damage and process condition determination. In: AIP Conference Proceedings, vol. 2102, p. 020005 (2019). AIP Publishing LLC. https://doi.org/10.1063/1.5099709

  136. Koester, L.W., Taheri, H., Bigelow, T.A., Bond, L.J., Faierson, E.J.: In-situ acoustic signature monitoring in additive manufacturing processes. In: AIP Conference Proceedings, vol. 1949, p. 020006 (2018). AIP Publishing LLC. https://doi.org/10.1063/1.5031503

  137. Whiting, J., Springer, A., Sciammarella, F.: Real-time acoustic emission monitoring of powder mass flow rate for directed energy deposition. Addit. Manuf. 23, 312–318 (2018). https://doi.org/10.1016/j.addma.2018.08.015

    Article  Google Scholar 

  138. Niknam, S.A., Li, D., Das, G.: An acoustic emission study of anisotropy in additively manufactured ti-6al-4v. Int. J. Adv. Manuf. Technol. 100(5–8), 1731–1740 (2019). https://doi.org/10.1007/s00170-018-2780-5

    Article  Google Scholar 

  139. Droubi, M., Reuben, R., White, G.: Statistical distribution models for monitoring acoustic emission (ae) energy of abrasive particle impacts on carbon steel. Mech. Syst. Signal Process. 30, 356–372 (2012). https://doi.org/10.1016/j.ymssp.2011.12.017

    Article  Google Scholar 

  140. Hii, N.C., Tan, C., Wilcox, S., Chong, Z.: An investigation of the generation of acoustic emission from the flow of particulate solids in pipelines. Powder Technol. 243, 120–129 (2013). https://doi.org/10.1016/j.powtec.2013.03.038

    Article  Google Scholar 

  141. Zhai, Y., Lados, D.A., Brown, E.J., Vigilante, G.N.: Fatigue crack growth behavior and microstructural mechanisms in ti-6al-4v manufactured by laser engineered net shaping. Int. J. Fatigue 93, 51–63 (2016). https://doi.org/10.1016/j.ijfatigue.2016.08.009

    Article  Google Scholar 

  142. Kasperovich, G., Haubrich, J., Gussone, J., Requena, G.: Correlation between porosity and processing parameters in tial6v4 produced by selective laser melting. Mater. Des. 105, 160–170 (2016). https://doi.org/10.1016/j.matdes.2016.05.070

    Article  Google Scholar 

  143. Pagac, M., Hajnys, J., Ma, Q.-P., Jancar, L., Jansa, J., Stefek, P., Mesicek, J.: A review of vat photopolymerization technology: materials, applications, challenges, and future trends of 3d printing. Polymers 13(4), 598 (2021). https://doi.org/10.3390/polym13040598

    Article  Google Scholar 

  144. AlRashid, A., Ahmed, W., Khalid, M.Y., Koc, M.: Vat photopolymerization of polymer and polymer composites: processes and applications. Addit. Manuf. (2021). https://doi.org/10.1016/j.addma.2021.102279

    Article  Google Scholar 

  145. Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T., Hui, D.: Additive manufacturing (3d printing): a review of materials, methods, applications and challenges. Composite B 143, 172–196 (2018). https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  Google Scholar 

  146. Chartrain, N.A., Williams, C.B., Whittington, A.R.: A review on fabricating tissue scaffolds using vat photopolymerization. Acta Biomater. 74, 90–111 (2018). https://doi.org/10.1016/j.actbio.2018.05.010

    Article  Google Scholar 

  147. Zakeri, S., Vippola, M., Levänen, E.: A comprehensive review of the photopolymerization of ceramic resins used in stereolithography. Addit. Manuf. 35, 101177 (2020). https://doi.org/10.1016/j.addma.2020.101177

    Article  Google Scholar 

  148. Zhang, F., Zhu, L., Li, Z., Wang, S., Shi, J., Tang, W., Li, N., Yang, J.: The recent development of vat photopolymerization: a review. Addit. Manuf. 48, 102423 (2021). https://doi.org/10.1016/j.addma.2021.102423

    Article  Google Scholar 

  149. Hafkamp, T., van Baars, G., de Jager, B., Etman, P.: A feasibility study on process monitoring and control in vat photopolymerization of ceramics. Mechatronics 56, 220–241 (2018). https://doi.org/10.1016/j.mechatronics.2018.02.00

    Article  Google Scholar 

  150. Mohamed, O.A., Masood, S.H., Bhowmik, J.L.: Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv. Manuf. 3, 42–53 (2015). https://doi.org/10.1007/s40436-014-0097-7

    Article  Google Scholar 

  151. AM chronicle. https://www.amchronicle.com/insights/repair-and-remanufacturing-of-hemm-spares-with-directed-energy-deposition/. Accessed 15 Jan-2022

Download references

Funding

This project is funded by the In-house R&D activities of the Council of Scientific & Industrial Research -Structural Engineering Research Centre, Chennai, India, under MLP-213.

Author information

Authors and Affiliations

Authors

Contributions

PRP: conceptualization, methodology, writing, review and editing. PA: review and editing. SS: writing—review and editing, data collection. SKK: review and editing.

Corresponding author

Correspondence to Prabhat Ranjan Prem.

Ethics declarations

Competing interests

Nil.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prem, P.R., Sanker, A.P., Sebastian, S. et al. A Review on Application of Acoustic Emission Testing During Additive Manufacturing. J Nondestruct Eval 42, 96 (2023). https://doi.org/10.1007/s10921-023-01005-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-023-01005-0

Keywords

Navigation