Skip to main content
Log in

Correlation Between Ultrasonic Pulse Velocity and Thermal Conductivity of Cement-Based Composites

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The thermal conductivity of construction materials is among the main factors influencing the thermal performance of buildings. This property is, thus, extensively demanded for design purposes. The thermal conductivity is especially related to the pore system and the composition of cement-based composites, the same factors that affect their Ultrasonic Pulse Velocity (UPV). In this sense, the present work evaluates the correlation between thermal conductivity and UPV. To this purpose, mortar specimens were investigated, with varying mix proportions, fine aggregate types, and dosages of air-entraining admixture. A satisfactory determination coefficient (R2 > 0.9) was obtained between thermal conductivity and UPV of the mortars when they were grouped under similar components and pore structure. It was observed that the pore system of the mortars tested is more influential to the UPV than their overall porosity. In this sense, a better correlation was found between UPV and thermal conductivity than between thermal conductivity and specific gravity. Additionally, the fine aggregate type presents a significant impact—not only due to its chemical and mineralogical properties but also as a result of the morphology that each aggregate generates within the matrix. In conclusion, this technique potentially presents high applicability to the thermal characterisation of cement-based composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mendes, J., Barreto, R., Paula, A., Elói, F., Brigolini, G., Peixoto, R.: On the relationship between morphology and thermal conductivity of cement-based composites. Cement Concr. Compos. 104, 103365 (2019)

    Google Scholar 

  2. Marie, I.: Thermal conductivity of hybrid recycled aggregate–Rubberized concrete. Constr. Build. Mater. 133, 516–524 (2017)

    Google Scholar 

  3. Demirboga, R., Gül, R.: The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete. Cem. Concr. Res. 33, 723–727 (2003)

    Google Scholar 

  4. Kim, K., Jeon, S., Kim, J., Yang, S.: An experimental study on thermal conductivity of concrete. Cem. Concr. Res. 33, 363–371 (2003)

    Google Scholar 

  5. Khan, M.: Factors affecting the thermal properties of concrete and applicability of its prediction models. Build. Environ. 37, 607–614 (2002)

    Google Scholar 

  6. Smith, D.S., Alzina, A., Bourret, J., Nait-Ali, B., Pennec, F., Tessier-Doyen, N., Gonzenbach, U.T.: Thermal conductivity of porous materials. J. Mater. Res. 28(17), 2260–2272 (2013)

    Google Scholar 

  7. Burger, N., Laachachi, A., Ferriol, M., Lutz, M., Toniazzo, V., Ruch, D.: Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog. Polym. Sci. 61, 1–28 (2016)

    Google Scholar 

  8. ABNT, “NBR 15220—Thermal performance in buildings. Part 1: Definitions, symbols and units. Brazilian Association of Technical Standards, Rio de Janeiro (2005)

  9. Prada, A., Cappelletti, F., Baggio, P., Gasparella, A.: On the effect of material uncertainties in envelope heat transfer simulations. Energy Build. 71, 53–60 (2014)

    Google Scholar 

  10. Motawa, I., Carter, K.: Sustainable BIM-based evaluation of buildings. Procedia 74, 419–428 (2013)

    Google Scholar 

  11. Harish, V.S.K.V., Kumar, A.: A review on modeling and simulation of building energy systems. Renew. Sustain. Energy Rev. 56, 1272–1292 (2016)

    Google Scholar 

  12. Jelle, B.P.: Traditional, state-of-the-art and future thermal building insulation materials and solutions—properties, requirements and possibilities. Energy Build. 43(10), 2549–2563 (2011)

    Google Scholar 

  13. Komlos, K., Popovics, S., Nürnbergerová, T., Babal, B., Popovics, J.S.: Ultrasonic pulse velocity test of concrete properties as specified in various standards. Cem. Concr. Compos. 18, 357–364 (1996)

    Google Scholar 

  14. Delgadillo, H.H., Kern, B., Loendersloot, R., Yntema, D., Akkerman, R.: A Methodology based on pulse-velocity measurements to quantify the chemical degradation levels in thin mortar specimens. J. Nondestruct. Eval. 37(4), 79 (2018)

    Google Scholar 

  15. Lafhaj, Z., Goueygou, M.: Experimental study on sound and damaged mortar: Variation of ultrasonic parameters with porosity. Constr. Build. Mater. 23(2), 953–958 (2009)

    Google Scholar 

  16. Dzaye, E.D., De Schutter, G., Aggelis, D.G.: Study on mechanical acoustic emission sources in fresh concrete. Arch. Civ. Mech. Eng. 18(3), 742–754 (2018)

    Google Scholar 

  17. Popovics, S., Rose, J., Popovics, S.: The behavior of ultrasonic pulses in concrete. Cem. Concr. Res. 20, 259–270 (1990)

    Google Scholar 

  18. Trtnik, G., Kavcic, F., Turk, G.: Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks. Ultrasonics 49, 53–60 (2009)

    Google Scholar 

  19. Demirboga, R., Turkmen, I., Karakoç, M.: Relationship between ultrasonic velocity and compressive strength for high-volume mineral-admixtured concrete. Cem. Concr. Res. 34, 2329–2336 (2004)

    Google Scholar 

  20. Kumar, R., Bhattacharjee, B.: Porosity, pore size distribution and in situ strength of concrete. Cem. Concr. Res. 33, 155–164 (2003)

    Google Scholar 

  21. Roberts, A., Garboczi, E.: Elastic Properties of Model Porous Ceramics. J. Am. Ceram. Soc. 83(12), 3041–3048 (2000)

    Google Scholar 

  22. Davraz, M., Kilincarslan, S., Koru, M., Tuzlak, F.: Investigation of relationships between ultrasonic pulse velocity and thermal conductivity coefficient in foam concretes. Acta Phys. Pol. A 130(1), 469–470 (2016)

    Google Scholar 

  23. ABNT: NBR 10007—Sampling of solid waste. Brazilian Association of Technical Standards, Rio de Janeir (2004)

  24. ABNT: NBR 16697—Portland Cement—Requirements. Brazilian Association of Technical Standards, Rio de Janeiro (2018)

  25. ABNT: NBR 7175 - Hydrated lime for mortars—requirements. Brazilian Association of Technical Standards, Rio de Janeiro (2003)

  26. Mendes, J., Moro, T., Figueiredo, A., Silva, K., Silva, G., Silva, G., Peixoto, R.: Mechanical, rheological and morphological analysis of cement-based composites with a new LAS-based air entraining agent. Constr. Build. Mater. 145, 648–661 (2017)

    Google Scholar 

  27. ABNT: NBR NM 248—Aggregates—Sieve analysis of fine and coarse aggregates. Brazilian Association of Technical Standards, Rio de Janeiro (2003)

  28. Fontes, W., Costa, E., Mendes, J., Fontes, G., Brigolini, G., Peixoto, R.: Iron ore tailings in the production of cement tiles: a value analysis on building sustainability. Ambiente Construído 18, 395–412 (2018)

    Google Scholar 

  29. Yellishetty, M., Karpe, V., Reddy, E., Subhash, K.: “Reuse of iron ore mineral wastes in civil engineering constructions: a case study. Resour. Conserv. Recycl. 52, 1283–1289 (2008)

    Google Scholar 

  30. Ramirio, R.F., Pamplona, D.R.P., Francklin, I., Collares, E.G.: Estudo comparativo de rejeitos de quarttzito com outros agregados comercialmente utilizados como materiais de construção no Sudoeste de Minas Gerais. Ciência et Praxis 1(1), 25–32 (2008)

    Google Scholar 

  31. Santos, D.: Total substitution of the natural aggregate by friable quartzite for the production of mixed mortars for laying and coating. Federal University of Ouro Preto (Master's Thesis) (in Portuguese), Ouro Preto (2015)

  32. ABNT: NBR NM 52—Fine aggregate—Determination of the bulk specific gravity and apparent specific gravity,” Brazilian Association of Technical Standards, Rio de Janeiro (2009)

  33. ABNT: NBR 13276—Mortars applied on walls and ceilings—Preparation of mortar for unit masonry and rendering with standard consistence index. Brazilian Association of Technical Standards, Rio de Janeiro (2005)

  34. Siwinska, A., Garbalinska, H.: Thermal conductivity coefficient of cement-based mortars as air relative humidity function. Heat Mass Transfer 47(1), 1077–1087 (2011)

    Google Scholar 

  35. ABNT: NBR 13280—Mortars applied on walls and ceilings—Determination of the specific gravity in the hardened stage. Brazilian Association of Technical Standards, Rio de Janeiro (2005)

  36. ABNT: NBR 9778—Hardened mortar and concrete—Determination of absorption, voids and specific gravity. Brazilian Association of Technical Standards, Rio de Janeiro (2009)

  37. ASTM: ASTM C597—Standard Test Method for Pulse Velocity Through Concrete. ASTM International, West Conshohocken (2016)

  38. Yaman, Y., Inei, G., Yesiller, N., Aktan, H.: Ultrasonic pulse velocity in concrete using direct and indirect transmission. ACI Mater. J. 98(6), 450–458 (2001)

    Google Scholar 

  39. ABNT: Hardened concrete—Determination of ultrasonic wave transmission velocity. Brazilian Association of Technical Standards, Rio de Janeiro (2019)

  40. Ouyang, X., Guo, Y., Qiu, X.: The feasibility of synthetic surfactant as an air entraining agent for the cement matrix. Constr. Build. Mater. 22, 1774–1779 (2008)

    Google Scholar 

  41. Du, L., Folliard, K.J.: Mechanisms of air entrainment in concrete. Cem. Concr. Res. 35, 1463–1471 (2005)

    Google Scholar 

  42. Sébaı̈bi, Y., Dheilly, R.M., Queneudec, M.: Study of the water-retention capacity of a lime–sand mortar: influence of the physicochemical characteristics of the lime. Cem. Concr. Res. 33(5), 689–696 (2003)

  43. Mehta, P., Monteiro, P.J.M.: Concrete: Microstructure, Properties, and Materials, 2ndª edn. IBRACON, São Paulo (2014)

    Google Scholar 

  44. Fontes, W., Mendes, J., Silva, S., Peixoto, R.: Mortars for laying and coating produced with iron ore tailings from tailing dams. Constr. Build. Mater. 112, 988–995 (2016)

    Google Scholar 

  45. SantAna Filho, J.N., Da Silva, S.N., Silva, G.C., Mendes, J.C., Peixoto, R.A.F.: Technical and environmental feasibility of interlocking concrete pavers with iron ore tailings from tailings dams. J. Mater. Civ. Eng. 29(9), 04017104 (2017)

    Google Scholar 

  46. Yuli, W., Hang, H., Xiaoxing, L.: Influences of aggregate micro fines on the packing of fresh mortar and the performances of mortar. Compos. B Eng. 164, 493–498 (2019)

    Google Scholar 

  47. Łaźniewska-Piekarczyk, B.: The influence of selected new generation admixtures on the workability, air-voids parameters and frost-resistance of self compacting concrete. Constr. Build. Mater. 31, 310–319 (2012)

    Google Scholar 

  48. Ramachandran, V.: Concrete Admixtures Handbook, 2nda edn. Noyes Publications, New Jersey (1995)

    Google Scholar 

  49. ACI Committee: ACI 228.2R Nondestructive Test Methods for Evaluation of Concrete in Structures. American Concrete Institute (2013)

  50. Lafhaj, Z., Goueygou, M., Djerbi, A., Kaczmarek, M.: Correlation between porosity, permeability and ultrasonic parameters of mortar with variable water/ cement ratio and water content. Cem. Concr. Res. 36(4), 625–633 (2006)

    Google Scholar 

  51. Punurai, W., Jarzynski, J., Qu, J., Kim, J.Y., Jacobs, L.J., Kurtis, K.E.: Characterization of multi-scale porosity in cement paste by advanced ultrasonic techniques. Cem. Concr. Res. 37(1), 38–46 (2007)

    Google Scholar 

  52. Mendes, J.C., Pinto, P.B., da Silva, H.E.A., Barreto, R.R.M.T.K., Peixoto, R.A.F.: Macroporous mortars for laying and coating. J. Constr. 18(1), 29–41 (2019)

    Google Scholar 

  53. Liu, K., Wang, Z., Jin, C., Wang, F., Lu, X.: An experimental study on thermal conductivity of iron ore sand cement mortar. Constr. Build. Mater. 101, 932–941 (2015)

    Google Scholar 

  54. Groß, J.: Linear regression, vol. 175. Springer Science & Business Media, Dortmund (2012)

    Google Scholar 

  55. Enrick, N.: Decision-Oriented Statistics. Brandon/Systems Press, Princeton (1970)

    Google Scholar 

  56. Francl, J., Kingery, W.D.: Thermal conductivity: IX, experimental investigation of effect of porosity on thermal conductivity. J. Am. Ceram. Soc. 37, 99–107 (1954)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the agencies CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for providing financial support. We are also grateful for the infrastructure and collaboration of the Research Group on Solid Wastes—RECICLOS—CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Júlia Castro Mendes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendes, J.C., Barreto, R.R., Costa, L.C.B. et al. Correlation Between Ultrasonic Pulse Velocity and Thermal Conductivity of Cement-Based Composites. J Nondestruct Eval 39, 36 (2020). https://doi.org/10.1007/s10921-020-00680-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-020-00680-7

Keywords

Navigation