Skip to main content
Log in

The Fuzzy Logic Application in Volume Fractions Prediction of the Annular Three-Phase Flows

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

In this paper, the volume fractions in the annular three-phase flow are measured based on a dual energy metering system consisting of \(^{152}\)Eu and \(^{137}\)Cs and one NaI detector, and then modeled by fuzzy logic. Since the summation of volume fractions are constant (equal to 100%), therefore the fuzzy network must predict only two volume fractions. In this study, three fuzzy networks are applied. The first network is utilized to predict the gas and water volume fractions. The next one is applied to predict the gas and oil volume fractions, and the last one to predict the water and oil volume fractions. In the next step, the numerically obtained data from MCNP-X code, must be imported to the fuzzy models. Then, the average errors of these three networks are computed and compared. The network which has the least error is selected as the best predictor model. According to the modeling results, the best fuzzy network, predicts the gas and water volume fractions with the mean relative error of less than 0.3%, which shows that the fuzzy logic can predict the results precisely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hoffmann, R., Johnson, G.W.: Measuring phase distribution in high pressure three-phase flow using gamma densitometry. Flow Meas. Instrum. 22, 351–359 (2011)

    Article  Google Scholar 

  2. Salgado, C.M., Pereira, C.M.N.A., Schirru, R., Brandão, L.E.B.: Flow regime identification and volume fraction prediction in multiphase flows by means of gamma-ray attenuation and artificial neural networks. Prog. Nucl. Energy 52, 555–562 (2010)

    Article  Google Scholar 

  3. Miller G.J., Alexander C.J., Thompson D.J.: A high- accuracy, calibration-free multiphase meter. In: 17th North Sea Flow Measurement Workshop, Oslo. Institute of Petroleum on behalf of NIF, NFOGM and NEL (1999)

  4. Roshani, G.H., Feghhi, S.A.H., Adineh-Vand, A., Khorsandi, M.: Application of adaptive neuro-fuzzy inference system in prediction of fluid density for a gamma ray densitometer in petroleum products monitoring. Measurement 46, 3276–3281 (2013)

    Article  Google Scholar 

  5. Roshani, G.H., Nazemi, E., Feghhi, S.A.H., Setayeshi, S.: Flow regime identification and void fraction prediction in two-phase flows based on gamma ray attenuation. Measurement 62, 25–32 (2015)

    Article  Google Scholar 

  6. Roshani, G.H., Feghhi, S.A.H., Mahmoudi-Aznaveh, A., Nazemi, E., Adineh-Vand, A.: Precise volume fraction prediction in oil-water-gas multiphase flows by means of gamma-ray attenuation and artificial neural networks using one detector. Measurement 51, 34–41 (2014)

    Article  Google Scholar 

  7. Nazemi, E., Feghhi, S.A.H., Roshani, G.H.: void fraction prediction in two-phase flows independent of the liquid phase density changes. Radiat. Meas. 68, 49–54 (2014)

    Article  Google Scholar 

  8. Nazemi, E., Roshani, G.H., Feghhi, S.A.H., GholipourPeyvandi, R., Setayeshi, S.: Precise void fraction measurement in two-phase flows independent of the flow regime using gamma-ray attenuation. Nucl. Eng. Technol. 48, 64–71 (2016)

    Article  Google Scholar 

  9. Nazemi, E., Roshani, G.H., Feghhi, S.A.H., Setayeshi, S., EftekhariZadeh, E., Fatehi, A.: Optimization of a method for identifying the flow regime and measuring void fraction in a broad beam gamma-ray attenuation technique. Int. J. Hydrog. Energy 41, 7438–7444 (2016)

    Article  Google Scholar 

  10. Roshani, G.H., Nazemi, E., Feghhi, S.A.H.: Investigation of using 60Co source and one detector for determining the flow regime and void fraction in gas-liquid two-phase flows. Flow Meas. Instrum. 50, 73–79 (2016)

    Article  Google Scholar 

  11. Yadollahi, A., Nazemi, E., Zolfaghari, A., Ajorloo, A.M.: Application of artificial neural network for predicting the optimal mixture of radiation shielding concrete. Prog. Nucl. Energy 89, 69–77 (2016)

    Article  Google Scholar 

  12. Roshani, G.H., Feghhi, S.A.H., Shama, F., Salehizadeh, A., Nazemi, E.: Prediction of materials density according to number of scattered gamma photons using optimum artificial neural network. Comput. Methods Phys., Article ID 305345 (2014)

  13. Roshani, G.H., Nazemi, E., Roshani, M.M.: Intelligent recognition of gas-oil-water three-phase flow regime and determination of volume fraction using radial basis function. Flow Meas. Instrum. 54, 39–45 (2017)

    Article  Google Scholar 

  14. Roshani, G.H., Nazemi, E., Roshani, M.M.: Flow regime independent volume fraction estimation in three-phase flows using dual-energy broad beam technique and artificial neural network. Neural Comput. Appl. 28, 1–10 (2016)

    Article  Google Scholar 

  15. Yadollahi, A., Nazemi, E., Zolfaghari, A., Ajorloo, A.M.: Optimization of thermal neutron shield concrete mixture using artificial neural network. Nucl. Eng. Des. 305, 146–155 (2016)

    Article  Google Scholar 

  16. Roshani, G.H., Nazemi, E., Roshani, M.M.: Usage of two transmitted detectors with optimized orientation in order to three phase flow metering. Measurement 100, 122–130 (2017)

    Article  Google Scholar 

  17. Zahakifar F., Keshtkar A.R., Nazemi E., Zaheri A.: Optimization of operational conditions in continuous electrodeionization method for maximizing Strontium and Cesium removal from aqueous solutions using artificial neural network. Radiochim. Acta (in press)

  18. Nazemi, E., Feghhi, S.A.H., Roshani, G.H., Setayeshi, S., Gholipour, P.R.: A radiation-based hydrocarbon two-phase flow meter for estimating of phase fraction independent of liquid phase density in stratified regime. Flow Meas. Instrum. 46, 25–32 (2015)

    Article  Google Scholar 

  19. Briesmeister J.F.: MCNP—a general Monte Carlo N-particle Transport Code, Version 4C. Report LA-13709-M. Los Alamos National Laboratory, April 2000

  20. Johansen, G.A., Jackson, P.: Salinity independent measurement of gas volume fraction in oil/gas/water pipe flows. Appl. Radiat. Isot. 53, 595–601 (2000)

    Article  Google Scholar 

  21. Zadeh, L.A.: Fuzzy sets. J. Inf. Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

  22. The MathWorks: Fuzzy Logic Toolbox User’s Guide, Inc., pp. 01760–02098. 3 Apple Hill Drive, Natick (1995–2007)

  23. Belarbi, K., Titel, F., Bourebia, W., Benmahammed, K.: Design of Mamdani Fuzzy logic controllers with rule base minimisation using genetic algorithm. J. Eng. Appl. Artif. Intell. 18, 875–880 (2005)

    Article  Google Scholar 

  24. Sugeno, M.: Industrial Applications of Fuzzy Control. Elsevier, Amsterdam (1985)

    MATH  Google Scholar 

  25. Jang, J.S.R., Sun, C.T.: Neuro-fuzzy modeling and control. Special issue on fuzzy logic in engineering applications. Proc. IEEE 83, 378–406 (1995)

    Article  Google Scholar 

  26. Karami, A., Rezaei, E., Shahhosseni, M., Aghakhani, M.: Fuzzy logic to predict the heat transfer in an air cooler equipped with different tube inserts. Int. J. Therm. Sci. 53, 141–147 (2012)

    Article  Google Scholar 

  27. Yousefi, T., Karami, A., Rezaei, E., Ebrahimi, S.: Fuzzy modeling of the forced convection heat transfer from a V-shaped plate exposed to an air impingement slot jet. Heat Transf. Asian Res. 41, 5 (2012)

    Google Scholar 

  28. Karami, A., Yousefi, T., Rezaei, E., Amiri, A.: Modeling of the free convection heat transfer from an isothermal horizontal cylinder in a vertical channel via the fuzzy logic. Int. J. Multiphys. 6, 7–16 (2012)

    Article  Google Scholar 

  29. Aghakhani, M., Mahdipour, J.M., Karami, A.: Prediction of weld bead dilution in GMAW process using fuzzy logic. Appl. Mech. Mater. 110–116, 3171–3175 (2012)

    Google Scholar 

  30. Aghakhani, M., Ghaderi, M.R., Karami, A., Derakhshan, A.A.: Combined effect of Ti\(O_{2}\) nanoparticles and input welding parameters on the weld bead penetration in submerged arc welding process using fuzzy logic. Int. J. Adv. Manuf. Technol. 70, 63–72 (2014)

    Article  Google Scholar 

  31. Rezaei, E., Karami, A., Yousefi, T., Mahmoudinezhad, S.: Modeling the free convection heat transfer in a partitioned cavity using ANFIS. Int. Commun. Heat Mass Transf. 39, 470–475 (2012)

    Article  Google Scholar 

  32. Karami, A., Akbari, E., Rezaei, E., Ashjaee, M.: Neuro-fuzzy modeling of the free convection from vertical arrays of isothermal cylinders. J. Thermophys. Heat Transf. 27, 588–592 (2013)

    Article  Google Scholar 

  33. Karami, A., Rezaei, E., Rahimi, M., Khani, S.: Modeling of heat transfer in an air cooler equipped with classic twisted tape inserts using adaptive neuro-fuzzy inference system. Chem. Eng. Commun. 200, 532–542 (2013)

    Article  Google Scholar 

  34. Karami, A.M., Yousefi, T., Mohebbi, S., Aghanajafi, C.: Prediction of free convection from vertical and inclined rows of horizontal isothermal cylinders using ANFIS. Arab. J. Sci. Eng. 39(5), 4201 (2014)

    Article  Google Scholar 

  35. Karami, A., Yousefi, T., Harsini, I., Maleki, E., Mahmoudinezhad, S.: Neuro-fuzzy modeling of the free convection heat transfer from a wavy surface. Heat Transf. Eng. 36, 847–855 (2015)

    Article  Google Scholar 

  36. Karami, A., Yousefi, T., Ebrahimi, S., Rezaei, E., Mahmoudinezhad, S.: Adaptive neuro-fuzzy inference system (ANFIS) to predict the forced convection heat transfer from a v-shaped plate. Heat Mass Transf. 49, 789–798 (2013)

    Article  Google Scholar 

  37. Pedrycz, W.: Why triangular membership functions? Fuzzy Sets Syst. 64, 21–30 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Salehizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karami, A., Roshani, G.H., Salehizadeh, A. et al. The Fuzzy Logic Application in Volume Fractions Prediction of the Annular Three-Phase Flows. J Nondestruct Eval 36, 35 (2017). https://doi.org/10.1007/s10921-017-0415-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-017-0415-7

Keywords

Navigation