Skip to main content
Log in

Adaptive neuro-fuzzy inference system (ANFIS) to predict the forced convection heat transfer from a v-shaped plate

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This paper reports the application of the adaptive neuro-fuzzy inference system to model the forced convection heat transfer from v-shaped plate internal surfaces exposed to an air impingement slot jet. The aim of the current study is to consider the effects of the angle of the v-shaped plate \( (\Upphi ) \), slot-to-plate spacing ratio (Z/W) and the Reynolds number (Re) variation on the average heat transfer from the v-shaped plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

L :

Plates width (m)

W:

Nozzle width (m)

Z :

Distance between nozzle exit and v-shaped plate forward stagnation point (m)

h :

Local heat transfer coefficient (W/m2 K)

\( \overline{h} \) :

Average heat transfer coefficient (W/m2 K)

k :

Thermal conductivity (W/m K)

Nu x :

Local Nusselt number

\( \overline{Nu} \) :

Average Nusselt number

Ra :

Rayleigh number based on the plate width

Re :

Reynolds number based on the nozzle exit velocity and nozzle width

T :

Temperature (K)

\( \Upphi \) :

Angle between plates (°)

f :

Film condition

w :

Surface of the plates

∞:

Undisturbed air and ambient

References

  1. Martin H (1977) Heat and mass transfer between impinging gas jets and solid surface. Adv Heat Transf 13:1–60

    Article  Google Scholar 

  2. Jambunathan K, Lai E, Moss MA, Button BL (1992) A review of heat transfer data for single circular jet impingement. Int J Heat Fluid Flow 13:106–115

    Article  Google Scholar 

  3. Viskanta R (1993) Heat transfer to impinging isothermal gas and flame jets. Exp Therm Fluid Sci 6:111–134

    Article  Google Scholar 

  4. Thomann H (1968) Effect of streamwise wall curvature on heat transfer in a turbulent boundary layer. J Fluid Mech 33:283–292

    Article  Google Scholar 

  5. Mayle RE, Blair MF, Kopper FC (1981) Turbulent boundary layer heat transfer on curved surfaces. J Heat Transf 101:521–525

    Article  Google Scholar 

  6. Chupp RE, Helms HE, McFadden PW, Brown TR (1969) Evaluation of internal heat transfer coefficients for impingement cooled turbine airfoils. J Aircr 6:203–208

    Article  Google Scholar 

  7. Metzger DE, Yamashita T, Jenkins CW (1969) Impingement cooling of concave surfaces with lines of circular air jets. J Eng Power 91:149–158

    Google Scholar 

  8. Tabakoff W, Clevenger W (1972) Gas turbine blade heat transfer augmentation by impingement of air jets having various configurations. J Eng Power 94:51–60

    Article  Google Scholar 

  9. Dyban YP, Mazur AI (1970) Heat transfer from a flat air jet flowing into a concave surface. Heat Transf Sov Res 2:15–20

    Google Scholar 

  10. Metzger DE, Baltzer RT, Jenkins CW (1972) Impingement cooling performance in gas turbine airfoils including effects of leading edge sharpness. J Eng Power 94:219–225

    Article  Google Scholar 

  11. Bunker RS, Metzger DE (1990) Local heat transfer in internally cooled turbine airfoil leading edge regions, part I-impingement cooling without film coolant extraction. ASME J Turbomach 112:451–458

    Article  Google Scholar 

  12. Gau C, Chung CM (1991) Surface curvature effect on slot airjet impingement cooling flow and heat transfer process. J Heat Transf 113:858–864

    Article  Google Scholar 

  13. Garimella SV, Nenaydykh B (1996) Nozzle-geometry effects in liquid jet impingement heat transfer. Int J Heat Mass Transf 39:2915–2923

    Article  Google Scholar 

  14. Colucci DW, Viskanta R (1996) Effect of nozzle geometry on local convective heat transfer to a confined impinging air jet. Exp Therm Heat Fluid Sci 13:71–80

    Article  Google Scholar 

  15. Yousefi T, Karami A, Rezaei E, Ebrahimi S (2012) Fuzzy modeling of the forced convection heat transfer from a v-shaped plate exposed to an air slot jet. Heat Transf Asian Res 41:430–443

    Article  Google Scholar 

  16. Karami A, Rezaei E, Rahimi M, Khani S (2013) Modeling of heat transfer in an air cooler equipped with classic twisted tape inserts using adaptive neuro-fuzzy inference system. Chem Eng Comm 200:532–542

    Article  Google Scholar 

  17. Hikmet E, Mustafa I, Abdulkadir S, Mehmet E (2008) Modelling a ground-coupled heat pump system using adaptive neuro-fuzzy inference systems. Int J Refrig 31:65–74

    Article  Google Scholar 

  18. Karami A, Rezaei E, Shahhosseni M, Aghakhani M (2012) Fuzzy logic to predict the heat transfer in an air cooler equipped with different tube inserts. Int J Therm Sci 53:141–147

    Article  Google Scholar 

  19. Rezaei E, Karami A, Yousefi T, Mahmoudinezhad S (2012) Modeling the free convection heat transfer in a partitioned cavity using ANFIS. Int Commun Heat Mass Transf 39:470–475

    Article  Google Scholar 

  20. Ying LC, Pan MC (2009) Using adaptive network based fuzzy inference system to forecast regional electricity load. Energy Convers Manag 49:205–211

    Article  Google Scholar 

  21. Ekici BB, Aksoy UT (2011) Prediction of building energy needs in early stage of design by using ANFIS. Expert Syst Appl 38:5352–5358

    Article  Google Scholar 

  22. Ayata T, Çam E, Yıldız O (2007) Adaptive neuro-fuzzy inference systems (ANFIS) application to investigate potential use of natural ventilation in new building designs in Turkey. Energy Convers Manag 48:1472–1479

    Article  Google Scholar 

  23. Mehrabi M, Pesteei SM, Pashaee TG (2011) Modeling of heat transfer and fluid flow characteristics of helicoidally double-pipe heat exchangers using adaptive neuro-fuzzy inference system (ANFIS). Int Commun Heat Mass Transf 38:525–532

    Article  Google Scholar 

  24. Varol Y, Avci E, Koca A, Oztop HF (2007) Prediction of flow fields and temperature distributions due to natural convection in a triangular enclosure using adaptive-network-based fuzzy inference system (ANFIS) and artificial neural network (ANN). Int Commun Heat Mass Transf 34:887–896

    Article  Google Scholar 

  25. Das MK, Kishor N (2009) Adaptive fuzzy model identification to predict the heat transfer coefficient in pool boiling of distilled water Expert Syst Appl 36:1142–1154

    Google Scholar 

  26. Karami A, Rezaei E, Mahmoudinezhad S, Yousefi T (2012) Optimization of a free convection heat transfer in a horizontal cylinder beneath an adiabatic ceiling using Imperialist competitive algorithm (ICA). J Chem Eng Jpn 45:401–407

    Article  Google Scholar 

  27. Bever MB (1949) Encyclopedia of materials science and engineering, vol 7. Pergamon press, Oxford

    Google Scholar 

  28. Yousefi T, Karami A, Ghashghaei D, Veysi F (2012) An experimental investigation on the free convection heat transfer in a horizontal cavity consisting of flow diverters. Heat Transf Asian Res 41:553–564

    Article  Google Scholar 

  29. Hauf W, Grigull U (1970) Optical methods in heat transfer, advances in heat transfer, vol 6. Academic Press, New York

    Google Scholar 

  30. Eckert EERG, Goldstein RJ (1972) Measurements in heat transfer, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  31. Kline SJ, McClintock FA (1953) Describing experimental uncertainties in single sample experiments. J Mech Eng 75:3–8

    Google Scholar 

  32. Flack RD (1978) Mach–Zehnder interferometer errors resulting from test section misalignment. Appl Optic 17:985–987

    Article  Google Scholar 

  33. Takagi T, Sugeno M (1985) Fuzzy identification of systems and its application to modeling and control. IEEE Trans Syst 15:116

    MATH  Google Scholar 

  34. Jang JSR, Sun CT (1995) Neuro-fuzzy modeling and control. Special issue on fuzzy logic in engineering applications. Proc IEEE 83:378–406

    Article  Google Scholar 

  35. Jang JSR, Sun CT, Mizutani E (1997) Neuro-fuzzy and soft computing, vol 19. Prentice Hall, Englewood Cliffs

    Google Scholar 

  36. Karami A, Yousefi T, Rezaei E, Amiri A (2012) Modeling of the free convection heat transfer from an isothermal horizontal cylinder in a vertical channel via the fuzzy logic. Int J Multiphys 6:7–16

    Article  Google Scholar 

  37. Aghakhani M, Mahdipour Jalilian M, Karami A (2012) Prediction of Weld Bead dilution in GMAW process using fuzzy logic. Appl Mech Mater 110:3171–3175

    Google Scholar 

  38. Amiri A, Karami A, Yousefi T, Zanjani M (2012) Artificial neural network to predict the natural convection from vertical and inclined arrays of horizontal cylinders. Polish J Chem Technol 14:46–52

    Google Scholar 

  39. Karami A, Rezaei E, Rahimi M, Zanjani M (2012) Artificial neural modeling of the heat transfer in an air cooled heat exchanger equipped with butterfly inserts. Int Energy J 13:21–28

    Google Scholar 

  40. The MathWorks (1995–2007) fuzzy logic toolbox user’s guide. Inc., 3 Apple Hill Drive, Natick

  41. Pedrycz W (1994) Why triangular membership functions? Fuzzy Sets Syst 64:21–30

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tooraj Yousefi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karami, A., Yousefi, T., Ebrahimi, S. et al. Adaptive neuro-fuzzy inference system (ANFIS) to predict the forced convection heat transfer from a v-shaped plate. Heat Mass Transfer 49, 789–798 (2013). https://doi.org/10.1007/s00231-013-1125-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-013-1125-z

Keywords

Navigation