Skip to main content
Log in

Analysis of a New NFV Scheme Preserving DMP for Two-Dimensional Sub-diffusion Equation on Distorted Meshes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we describe a new nonlinear finite-volume scheme that preserves the discrete maximum principle (DMP) for the two-dimensional sub-diffusion equation on distorted meshes. One distinguishing feature of our method is its ability to uphold the DMP for the anisotropic sub-diffusion problems, thereby ensuring the absence of spurious oscillations in numerical solutions and maintaining the physical bounds of various quantities, such as concentration, temperature, and density. Notably, our scheme offers the advantage of being applicable to distorted meshes without stringent constraints. Numerical results demonstrate that our scheme successfully preserves maximum principle on various randomly distorted meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Brunner, H., Ling, L., Yamamoto, M.: Numerical simulations of 2D frational subdiffusion problems. J. Comput. Phys. 229, 6613–6622 (2010)

    Article  MathSciNet  Google Scholar 

  2. McLean, W.: Regularity of solutions to a time-fractional diffusion equation. ANZIAM J. 52, 123–138 (2010)

    Article  MathSciNet  Google Scholar 

  3. Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36, 197–221 (2016)

    MathSciNet  Google Scholar 

  4. Yang, X., Zhang, H., Zhang, Q., Yuan, G.: Simple positivity preserving nonlinear finite volume scheme for subdiffusion equations on general non-conforming distorted meshes. Nonlinear Dyn. 108, 3859–3886 (2022)

    Article  Google Scholar 

  5. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

    Article  MathSciNet  Google Scholar 

  6. Zhang, Y.N., Sun, Z.Z., Liao, H.-L.: Finite difference methods for the time fractional diffusion equation on nonuniform meshes. J. Comput. Phys. 265, 195–210 (2014)

    Article  MathSciNet  Google Scholar 

  7. Yang, X.H., Zhang, Z.M.: On conservative, positivity preserving, nonlinear FV scheme on distorted meshes for the multi-term nonlocal Nagumo-type equations. Appl. Math. Lett. 150, 108972 (2024)

    Article  MathSciNet  Google Scholar 

  8. Wang, J., Jiang, X., Zhang, H.: A BDF3 and new nonlinear fourth-order difference scheme for the generalized viscous Burgers’ equation. Appl. Math. Lett. 151, 109002 (2024)

    Article  MathSciNet  Google Scholar 

  9. Wang, J., Jiang, X., Yang, X., Zhang, H.: A nonlinear compact method based on double reduction order scheme for the nonlocal fourth-order PDEs with Burgers’ type nonlinearity. J. Appl. Math. Comput. 70, 1–23 (2024)

    Article  MathSciNet  Google Scholar 

  10. Liao, H.-L., Li, D.F., Zhang, J.W.: Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)

    Article  MathSciNet  Google Scholar 

  11. Luchko, Y.: Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl. 351, 218–223 (2009)

    Article  MathSciNet  Google Scholar 

  12. Jin, B., Lazarov, R., Thomée, V., Zhou, Z.: On nonnegativity preservation in finite element methods for subdiffusion equations. Math. Comput. 86, 2239–2260 (2017)

    Article  MathSciNet  Google Scholar 

  13. Ye, H., Liu, F., Anh, V., Turner, I.: Maximum principle and numerical method for the multi-term time-space Riesz–Caputo fractional differential equations. Appl. Math. Comput. 227, 531–540 (2014)

    MathSciNet  Google Scholar 

  14. Jiang, Y.: A new analysis of stability and convergence for finite difference schemes solving the time fractional Fokker–Planck equation. Appl. Math. Model. 39, 1163–1171 (2015)

    Article  MathSciNet  Google Scholar 

  15. Jiang, Y., Xu, X.: A monotone finite volume method for time fractional Fokker–Planck equations. Sci. China Math. 62, 783–794 (2019)

    Article  MathSciNet  Google Scholar 

  16. Brunner, H., Han, H., Yin, D.: The maximum principle for time-fractional diffusion equations and its application. Numer. Funct. Anal. Optim. 36, 1307–1321 (2015)

    Article  MathSciNet  Google Scholar 

  17. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum principle preserving exponential time differencing schemes for the nonlocal Allen–Cahn equation. SIAM J. Numer. Anal. 57(2), 875–898 (2019)

    Article  MathSciNet  Google Scholar 

  18. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum bound principles for a class of semilinear parabolic equations and exponential time-differencing schemes. SIAM Rev. 63(2), 317–359 (2021)

    Article  MathSciNet  Google Scholar 

  19. Liao, H.-L., Tang, T., Zhou, T.: On energy stable, maximum-principle preserving, second order BDF scheme with variable steps for the Allen–Cahn equation. SIAM J. Numer. Anal. 58(4), 2294–2314 (2020)

    Article  MathSciNet  Google Scholar 

  20. Liao, H.-L., Tang, T., Zhou, T.: An energy stable and maximum bound preserving scheme with variable time steps for time fractional Allen–Cahn equation. SIAM J. Sci. Comput. 43(5), A3033-S907 (2021)

    Article  MathSciNet  Google Scholar 

  21. Luchko, Y.: Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation. Comput. Math. Appl. 59(5), 1766–1772 (2010)

    Article  MathSciNet  Google Scholar 

  22. Sheng, Z., Yuan, G.: The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes. J. Comput. Phys. 230, 2588–2604 (2011)

    Article  MathSciNet  Google Scholar 

  23. Sheng, Z., Yuan, G.: Construction of nonlinear weighted method for finite volume schemes preserving maximum principle. SIAM J. Sci. Comput. 40, A607–A628 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful for helpful suggestions from reviewers.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhimin Zhang.

Ethics declarations

Conflict of interest

The authors declare to have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was supported by National Natural Science Foundation of China Mathematics Tianyuan Foundation (12226340, 12226337).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Zhang, Z. Analysis of a New NFV Scheme Preserving DMP for Two-Dimensional Sub-diffusion Equation on Distorted Meshes. J Sci Comput 99, 80 (2024). https://doi.org/10.1007/s10915-024-02511-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02511-7

Keywords

Mathematics Subject Classification

Navigation