Skip to main content

A Numerical Method for the Solution of the Time-Fractional Diffusion Equation

  • Conference paper
Computational Science and Its Applications – ICCSA 2014 (ICCSA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8579))

Included in the following conference series:

Abstract

In this work we provide a new numerical scheme for the solution of the fractional sub-diffusion equation. This new scheme is based on a combination of a recently proposed non-polynomial collocation method for fractional ordinary differential equations and the method of lines. A comparison of the numerical results obtained with known analytical solutions is carried out, using different values of the order of the fractional derivative and several time and space stepsizes, and we conclude that, as in the fractional ordinary differential equation case, the convergence order of the method is independent of the order of the time derivative and does not decrease when dealing with certain nonsmooth solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wyss, W.: The fractional diffusion equation. Journal of Mathematical Physics 27, 27–82 (1986)

    Article  MathSciNet  Google Scholar 

  2. Nigmatullin, R.: The realization of the generalized transfer equation in a medium with fractal geometry physica status solidi (b). Wiley Online Library 133, 425–430 (1986)

    Google Scholar 

  3. Schneider, W., Wyss, W.: Fractional diffusion and wave equations. Journal of Mathematical Physics 30, 134–144 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Mainardi, F.: The time fractional diffusion-wave equation. Radiophysics and Quantum Electronics 38, 13–24 (1995)

    Article  MathSciNet  Google Scholar 

  5. Angulo, J., Ruiz-Medina, M., Anh, V., Grecksch, W.: Fractional diffusion and fractional heat equation. Advances in Applied Probability, Applied Probability Trust 32, 1077–1099 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Richardson, L.F.: Atmospheric diffusion shown on a distance-neighbour graph, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, JSTOR 110, 709–737 (1926)

    Google Scholar 

  7. Mainardi, F.: Fractional diffusive waves in viscoelastic solids. In: Wegner, J.I., Norwood, F.R. (eds.) Nonlinear Waves in Solids, ASME Book No. AMR, Fairfield, NJ, vol. 137, pp. 93–97 (1995)

    Google Scholar 

  8. Mainardi, F.: Some basic problems in continuum and statistical mechanics. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics. Springer, Wien (1997)

    Google Scholar 

  9. Mainardi, F., Pagnini, G., Gorenflo, R.: Some aspects of fractional diffusion equations of single and distributed order. Applied Mathematics and Computation 187, 295–305 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gorenflo, R., Mainardi, F., Moretti, D., Paradisi, P.: Time fractional diffusion: a discrete random walk approach. Nonlinear Dynam. 29, 129–143 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Saha Ray, S., Bera, R.K.: Analytical solution of a fractional diffusion equation by Adomian decomposition method. Applied Mathematics and Computation 174, 329–336 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Das, S.: Analytical solution of a fractional diffusion equation by variational iteration method. Computers and Mathematics with Applications 57, 483–487 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen, W., Ye, L., Sun, H.: Fractional diffusion equations by the Kansa method. Computers and Mathematics with Applications 59, 1614–1620 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Diethelm, K.: The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type. Springer, Heidelberg (2010)

    Book  Google Scholar 

  15. Chen, C.M., Liu, F., Turner, I., Anh, V.: A fourier method for the fractional diffusion equation describing sub-diffusion. Journal of Computational Physics 227, 886–897 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chen, C.M., Liu, F., Burrage, K.: Finite difference methods and a fourier analysis for the fractional reaction subdiffusion equation. Appl. Math. Comput. 198, 754–769 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Cui, M.: Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 228, 7792–7804 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gao, G., Sun, Z.Z.: A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230, 586–595 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–736 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. Journal of Computational Physics 225, 1533–1552 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Liu, F., Yang, C., Burrage, K.: Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comput. Appl. Math. 231, 160–176 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Murio, D.A.: Implicit finite difference approximation for time fractional diffusion equations. Computer and Mathematics with Applications 56, 1138–1145 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Yuste, S.B., Acedo, L.: An explicit finite difference method and a new von Neumann type stability analysis for fractional diffusion equations. SIAM Journal on Numerical Analysis 42, 1862–1874 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Yuste, S.B.: Weighted average finite difference methods for fractional diffusion equations. Journal of Computational Physics 216, 264–274 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zhao, X., Sun, Z.Z.: A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions. Journal of Computational Physics 230, 6061–6074 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sun, H.G., Chen, W., Sze, K.Y.: A semi-discrete finite element method for a class of time-fractional diffusion equations. Phil. Trans. R. Soc. A 371(2013), 20120268–20120268 (2013)

    Article  MathSciNet  Google Scholar 

  27. Jun, J.Y., Jing Tang, M.A.: Moving finite element methods for time fractional partial differential equations. Science China Mathematics 56, 1287–1300 (2013)

    Article  MathSciNet  Google Scholar 

  28. Gu, Y.T., Zhuang, P.: Anomalous sub-diffusion equations by the meshless collocation method. Australian Journal of Mechanical Engineering 10, 1–8 (2012)

    Article  Google Scholar 

  29. Fenghui, H.: A Time-Space Collocation Spectral Approximation for a Class of Time Fractional Differential Equations. International Journal of Differential Equations 2012, Article ID 495202 (2012), doi:10.1155/2012/495202

    Google Scholar 

  30. Liu, F., Chen, S., Anh, V., Turner, I.: Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation. ANZIAM J. 46(E) 488–504 (2005)

    Google Scholar 

  31. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional calculus models and numerical methods. Series on Complexity Nonlinearity and Chaos. World Scientific, Boston (2012)

    Google Scholar 

  32. Ford, N.J., Morgado, M.L., Rebelo, M.: Nonpolynomial collocation approximation of solutions to fractional differential equations. Fractional Calculus & Applied Analysis 16, 874–891 (2013)

    Article  MathSciNet  Google Scholar 

  33. Luchko, Y.: Maximum principle and its application for the time-fractional diffusion equations. Fractional Calculus & Applied Analysis 14(1), 110–124 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  34. Luchko, Y.: Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation. Fractional Calculus & Applied Analysis 15(1), 141–160 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ferrás, L.L., Ford, N.J., Morgado, M.L., Rebelo, M. (2014). A Numerical Method for the Solution of the Time-Fractional Diffusion Equation. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2014. ICCSA 2014. Lecture Notes in Computer Science, vol 8579. Springer, Cham. https://doi.org/10.1007/978-3-319-09144-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09144-0_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09143-3

  • Online ISBN: 978-3-319-09144-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics