Skip to main content
Log in

Artificial Viscosity to Get Both Robustness and Discrete Entropy Inequalities

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In the present work, we consider the numerical approximation of the weak solutions of first-order system of evolution laws supplemented with entropy inequalities. The systems under consideration are hyperbolic as soon as a conservation form is satisfied, but such stability property may be lost for non-conservative systems. Here, we show that the robustness and the entropy stability of any finite volume numerical scheme can be restored by introducing a suitable artificial numerical viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Abgrall, R.: A general framework to construct schemes satisfying additional conservation relations. Application to entropy conservative and entropy dissipative schemes. J. Comput. Phys. 372, 640–666 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Abgrall, R., Bacigaluppi, P., Tokareva, S.: A high-order nonconservative approach for hyperbolic equations in fluid dynamics. Comput. Fluids 169, 10–22 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Abgrall, R., Busto, S., Dumbser, M.: A simple and general framework for the construction of thermodynamically compatible schemes for computational fluid and solid mechanics. Appl. Math. Comput. 440, 127629 (2023)

    MathSciNet  MATH  Google Scholar 

  4. Abgrall, R., Ivanova, K.: Staggered residual distribution scheme for compressible flow. arXiv preprint, arXiv:2111.10647 (2021)

  5. Abgrall, R., Karni, S.: A comment on the computation of non-conservative products. J. Comput. Phys. 229(8), 2759–2763 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Abgrall, R., Öffner, P., Ranocha, H.: Reinterpretation and extension of entropy correction terms for residual distribution and discontinuous Galerkin schemes: application to structure preserving discretization. J. Comput. Phys. 453, 110955 (2022)

    MathSciNet  MATH  Google Scholar 

  7. Abgrall, R., Kumar, H.: Numerical approximation of a compressible multiphase system. Commun. Comput. Phys. 15(5), 1237–1265 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Beljadid, A., LeFloch, P.G., Mishra, S., Parés, C.: Schemes with well-controlled dissipation. Hyperbolic systems in nonconservative form. Commun. Comput. Phys. (to appear) (2016)

  9. Berthon, C., Boutin, B., Turpault, R.: Shock profiles for the shallow-water Exner models. Adv. Appl. Math. Mech. 7(3), 267–294 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Berthon, C., Coquel, F., LeFloch, P.G.: Why many theories of shock waves are necessary: kinetic relations for non-conservative systems. Proc. R. Soc. Edinb. Sect. A 142(1), 1–37 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Berthon, C., Dubroca, B., Sangam, A.: A local entropy minimum principle for deriving entropy preserving schemes. SIAM J. Numer. Anal. 50(2), 468–491 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Berthon, C., Duran, A., Foucher, F., Saleh, K., Zabsonré, J.D.: Improvement of the hydrostatic reconstruction scheme to get fully discrete entropy inequalities. J. Sci. Comput. 80, 924–956 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Berthon, C., Duran, A., Saleh, K.: Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov’s Legacy, chapter An easy control of the artificial numerical viscosity to get discrete entropy inequalities when approximating hyperbolic systems of conservation laws. Springer Nature Switzerland AG, Cham (2020)

  14. Berthon, C., Coquel, F.: Nonlinear projection methods for multi-entropies Navier–Stokes systems. Math. Comput. 76(259), 1163–1194 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Bouchut, F.: Introduction to the mathematical theory of kinetic equations. (1998)

  16. Bouchut, F.: Entropy satisfying flux vector splittings and kinetic BGK models. Numer. Math. 94(4), 623–672 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Bouchut, F.: Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2004)

  18. Bouchut, F., Morales, T.: A subsonic-well-balanced reconstruction scheme for shallow water flows. SIAM J. Numer. Anal. 48(5), 1733–1758 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Bouchut, F., Morales de Luna, T.: An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment. M2AN Math. Model. Numer. Anal. 42(4), 683–698 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Castro, M., Frings, J.T., Noelle, S., Parés, C., Puppo, G.: On the hyperbolicity of two- and three-layer shallow water equations. In: Hyperbolic Problems, Theory, Numerics and Applications. Volume 1, volume 17 of Ser. Contemp. Appl. Math. CAM, pp. 337–345. World Scientific Publishing, Singapore (2012)

  21. Castro, M., Macías, J., Parés, C.: A Q-scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system. ESAIM Math. Model. Numer. Anal. 35(01), 107–127 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Castro, M.J., LeFloch, P.G., Muñoz-Ruiz, M.L., Parés, C.: Why many theories of shock waves are necessary: convergence error in formally path-consistent schemes. J. Comput. Phys. 227(17), 8107–8129 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Castro, M.J., Macías, J., Parés, C., García-Rodríguez, J.A., Vázquez-Cendón, E.: A two-layer finite volume model for flows through channels with irregular geometry: computation of maximal exchange solutions: application to the strait of gibraltar. Commun. Nonlinear Sci. Numer. Simul. 9(2), 241–249 (2004)

    MathSciNet  MATH  Google Scholar 

  24. Castro, M.J., Morales de Luna, T., Parés, C.: Well-balanced schemes and path-conservative numerical methods. In: Abgrall, R., Shu, C.-W. (eds.) Handbook of Numerical Analysis, volume 18 of Handbook of Numerical Methods for Hyperbolic ProblemsApplied and Modern Issues, pp. 131–175. Elsevier, New York (2017). https://doi.org/10.1016/bs.hna.2016.10.002

  25. Castro, M.J., Fjordholm, U.S., Mishra, S., Pares, C.: Entropy conservative and entropy stable schemes for nonconservative hyperbolic systems. SIAM J. Numer. Anal. 51(3), 1371–1391 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Castro Dıaz, M., Fernández-Nieto, E.D., Morales de Luna, T., Narbona-Reina, G., Parés, C.: A HLLC scheme for nonconservative hyperbolic problems. Application to turbidity currents with sediment transport. ESAIM Math. Model. Numer. Anal. 47, 1–32 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Castro Díaz, M.J., Chacón Rebollo, T., Fernández-Nieto, E.D., Parés, C.: On well-balanced finite volume methods for nonconservative nonhomogeneous hyperbolic systems. SIAM J. Sci. Comput. 29(3), 1093–1126 (2007)

    MathSciNet  MATH  Google Scholar 

  28. Castro-Díaz, M.J., Fernández-Nieto, E.D., González-Vida, J.M., Parés-Madroñal, C.: Numerical treatment of the loss of hyperbolicity of the two-layer shallow-water system. J. Sci. Comput. 48(1–3), 16–40 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Chalons, C., Coquel, F.: The Riemann problem for the multi-pressure Euler system. J. Hyperbolic Differ. Equ. 2(03), 745–782 (2005)

    MathSciNet  MATH  Google Scholar 

  30. Chalons, C., Coquel, F., Godlewski, E., Raviart, P.-A., Seguin, N.: Godunov-type schemes for hyperbolic systems with parameter-dependent source. The case of Euler system with friction. Math. Models Methods Appl. Sci. 20(11), 2109–2166 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Chalons, C.: Path-conservative in-cell discontinuous reconstruction schemes for non conservative hyperbolic systems. Commun. Math. Sci. 18(1), 1–30 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Chorin, A.J.: Random choice solution of hyperbolic systems. J. Comput. Phys. 22(4), 517–533 (1976)

    MathSciNet  MATH  Google Scholar 

  33. Coquel, F., Perthame, B.: Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics. SIAM J. Numer. Anal. 35(6), 2223–2249 (1998)

    MathSciNet  MATH  Google Scholar 

  34. Cordier, S., Le, M.H., Morales de Luna, T.: Bedload transport in shallow water models: why splitting (may) fail, how hyperbolicity (can) help. Adv. Water Resour. 34(8), 980–989 (2011)

    Google Scholar 

  35. Dafermos, C.M.: Hyperbolic conservation laws in continuum physics, volume 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 3rd edn. Springer, Berlin (2010)

  36. Dal Maso, G., LeFloch, P.G., Murat, F.: Definition and weak stability of nonconservative products. Journal de mathématiques pures et appliquées 74(6), 483–548 (1995)

    MathSciNet  MATH  Google Scholar 

  37. Dubois, F., Mehlman, G.: A non-parameterized entropy correction for roe’s approximate Riemann solver. Numer. Math. 73(73), 169–208 (1996)

    MathSciNet  MATH  Google Scholar 

  38. Gallouët, T., Hérard, J.-M., Seguin, N.: Some recent finite volume schemes to compute Euler equations using real gas EOS. Int. J. Numer. Methods Fluids 39(12), 1073–1138 (2002)

    MathSciNet  MATH  Google Scholar 

  39. Gallouët, T., Hérard, J.-M., Seguin, N.: Some approximate Godunov schemes to compute shallow-water equations with topography. Comput. Fluids 32(4), 479–513 (2003)

    MathSciNet  MATH  Google Scholar 

  40. Glimm, J., Isaacson, E., Marchesin, D., McBryan, O.: Front tracking for hyperbolic systems. Adv. Appl. Math. 2(1), 91–119 (1981)

    MathSciNet  MATH  Google Scholar 

  41. Glimm, J., Marchesin, D., McBryan, O.: A numerical method for two phase flow with an unstable interface. J. Comput. Phys. 39(1), 179–200 (1981)

    MathSciNet  MATH  Google Scholar 

  42. Glimm, J.: Solutions in the large for nonlinear hyperbolic systems of equations. Commun. Pure Appl. Math. 18(4), 697–715 (1965)

    MathSciNet  MATH  Google Scholar 

  43. Godlewski, E., Raviart, P.-A.: Hyperbolic systems of conservation laws, volume 3/4 of Mathématiques & Applications (Paris) [Mathematics and Applications]. Ellipses, Paris (1991)

  44. Godlewski, E., Raviart, P.-A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Applied Mathematical Sciences, vol. 118. Springer, New York (1996)

    MATH  Google Scholar 

  45. Godunov, K.: A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Mat. Sb. (N.S.) 47(89), 271–306 (1959)

    MathSciNet  MATH  Google Scholar 

  46. González-Aguirre, J.C., Castro, M.J., Morales de Luna, T.: A robust model for rapidly varying flows over movable bottom with suspended and bedload transport: modelling and numerical approach. Adv. Water Resour. 140, 103575 (2020)

    Google Scholar 

  47. Gosse, L.: Computing Qualitatively Correct Approximations of Balance Laws: Exponential-fit, Well-balanced and Asymptotic-preserving. Springer, Berlin (2013)

    MATH  Google Scholar 

  48. Harten, A.: On the symmetric form of systems of conservation laws with entropy. J. Comput. Phys. 49(1), 151–164 (1983)

    MathSciNet  MATH  Google Scholar 

  49. Helluy, P., Hérard, J.-M., Mathis, H., Müller, S.: A simple parameter-free entropy correction for approximate Riemann solvers. Comptes rendus Mécanique 338(9), 493–498 (2010)

    MATH  Google Scholar 

  50. Hou, T.Y., LeFloch, P.G.: Why nonconservative schemes converge to wrong solutions: error analysis. Math. Comput. 62(206), 497–530 (1994)

    MathSciNet  MATH  Google Scholar 

  51. Karni, S.: Viscous shock profiles and primitive formulations. SIAM J. Numer. Anal. 29(6), 1592–1609 (1992)

    MathSciNet  MATH  Google Scholar 

  52. Khobalatte, B., Perthame, B.: Maximum principle on the entropy and second-order kinetic schemes. Math. Comput. 62(205), 119–131 (1994)

    MathSciNet  MATH  Google Scholar 

  53. Kröner, D.: Numerical Schemes for Conservation Laws. Wiley-Teubner Series Advances in Numerical Mathematics. Wiley, Chichester (1997)

    Google Scholar 

  54. Lax, P.D.: Shock waves and entropy. In: Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971), pp. 603–634. Academic Press, New York (1971)

  55. Lax, P.D.: Hyperbolic systems of conservation laws and the mathematical theory of shock waves. Society for Industrial and Applied Mathematics, Philadelphia (1973). Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 11

  56. LeFloch, P.G.: Entropy weak solutions to nonlinear hyperbolic systems under nonconservative form. Commun. Partial Differ. Equ. 13(6), 669–727 (1988)

    MathSciNet  MATH  Google Scholar 

  57. LeFloch, P.G.: Shock waves for nonlinear hyperbolic systems in nonconservative form. Institute for Math. and its Appl., Minneapolis, preprint, 593:1989 (1989)

  58. LeFloch, P.G., Liu, T.-P.: Existence theory for nonlinear hyperbolic systems in nonconservative form. Forum Math. 5, 261–280 (1993)

    MathSciNet  Google Scholar 

  59. LeFloch, P.G., Mishra, S.: Numerical methods with controlled dissipation for small-scale dependent shocks. Acta Numer 23, 743–816 (2014)

    MathSciNet  MATH  Google Scholar 

  60. LeFloch, P.G., Mohammadian, M.: Why many theories of shock waves are necessary: kinetic functions, equivalent equations, and fourth-order models. J. Comput. Phys. 227(8), 4162–4189 (2008)

    MathSciNet  MATH  Google Scholar 

  61. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  62. Masella, J.-M., Faille, I., Gallouët, T.: On a rough Godunov scheme. Int. J. Comput. Fluid Dyn. 12(2), 133–150 (1999)

    MathSciNet  MATH  Google Scholar 

  63. Morales, T., Castro Diaz, M.J., Parés, C.: Reliability of first order numerical schemes for solving shallow water system over abrupt topography. Appl. Math. Comput. 219(17), 9012–9032 (2013)

    MathSciNet  MATH  Google Scholar 

  64. Morales de Luna, T., Castro Diaz, M.J., Parés Madronal, C.: A duality method for sediment transport based on a modified Meyer–Peter & Müller model. J. Sci. Comput. 48(1–3), 258–273 (2011)

    MathSciNet  MATH  Google Scholar 

  65. Parés, C.: Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44(1), 300–321 (electronic) (2006)

  66. Pimentel-García, E., Castro, M.J., Chalons, C., Morales de Luna, T., Parés, C.: In-cell discontinuous reconstruction path-conservative methods for non conservative hyperbolic systems—second-order extension. J. Comput. Phys. 111152 (2022)

  67. Risebro, N.H., Tveito, A.: Front tracking applied to a nonstrictly hyperbolic system of conservation laws. SIAM J. Sci. Stat. Comput. 12(6), 1401–1419 (1991)

    MATH  Google Scholar 

  68. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)

    MathSciNet  MATH  Google Scholar 

  69. Schijf, J.B., Schönfled, J.C.: Theoretical considerations on the motion of salt and fresh water. IAHR (1953)

  70. Serre, D.: Systems of conservation laws. 1. Cambridge University Press, Cambridge (1999). Hyperbolicity, entropies, shock waves, Translated from the 1996 French original by I. N. Sneddon

  71. Tadmor, E.: Numerical viscosity and the entropy condition for conservative difference schemes. Math. Comput. 43(168), 369–381 (1984)

    MathSciNet  MATH  Google Scholar 

  72. Tadmor, E.: A minimum entropy principle in the gas dynamics equations. Appl. Numer. Math. 2(3–5), 211–219 (1986)

    MathSciNet  MATH  Google Scholar 

  73. Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws. i. Math. Comput. 49(179), 91–103 (1987)

    MathSciNet  MATH  Google Scholar 

  74. Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer 12(1), 451–512 (2003)

    MathSciNet  MATH  Google Scholar 

  75. Tadmor, E.: Entropy stable schemes. In: Abgrall, R., Shu, C.-W. (eds.) Handbook of Numerical Methods for Hyperbolic Problems: Basic and Fundamental Issues, vol. 17, pp. 467–493 (2017). North-Holland, Elsevier, Amsterdam (2016)

  76. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edn. Springer, Berlin, (1997). A practical introduction

  77. Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the Hll-Riemann solver. Shock Waves 4(4), 25–34 (1994)

    MATH  Google Scholar 

  78. Von Neumann, J., Richtmyer, R.D.: A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21(3), 232–237 (1950)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Manuel J. Castro acknowledges financial support from the Spanish Government and FEDER through the coordinated Research project RTI2018-096064-B-C21 and the Andalusian Government Research projects UMA18-FEDERJA-161 and P18-RT-3163. Arnaud Duran acknowledges financial support from the French National Research Agency project NABUCO, Grant ANR-17-CE40-0025 and from the French National program INSU-CNRS (Institut National des Sciences de l’ Univers - Centre National de la Recherche Scientifique) program LEFE-MANU (Les Enveloppes Fluides et Environnement - Méthodes Mathématiques et Numériques), project DWAVE. Tomás Morales acknowledges financial support from the Spanish Government and FEDER through the coordinated Research project RTI2018-096064-B-C22.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Duran.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berthon, C., Castro Díaz, M.J., Duran, A. et al. Artificial Viscosity to Get Both Robustness and Discrete Entropy Inequalities. J Sci Comput 97, 65 (2023). https://doi.org/10.1007/s10915-023-02385-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02385-1

Keywords

Mathematics Subject Classification

Navigation