Skip to main content
Log in

Preconditioned Legendre Spectral Galerkin Methods for the Non-separable Elliptic Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The Legendre spectral Galerkin method of self-adjoint second order elliptic equations usually results in a linear system with a dense and ill-conditioned coefficient matrix. In this paper, the linear system is solved by a preconditioned conjugate gradient (PCG) method where the preconditioner M is constructed by approximating the variable coefficients with a (T+1)-term Legendre series in each direction to a desired accuracy. A feature of the proposed PCG method is that the iteration step increases slightly with the size of the resulting matrix when reaching a certain approximation accuracy. The efficiency of the method lies in that the system with the preconditioner M is approximately solved by a one-step method based on the incomplete LU factorization technique with no fill-in, denoted by ILU(0). The ILU(0) factorization of \(M\in {\mathbb {R}}^{(N-1)^d\times (N-1)^d}\) can be computed using \({\mathcal {O}}(T^{2d} N^d)\) operations, and the number of nonzeros in the factorization factors is of \({\mathcal {O}}(T^{d} N^d)\), \(d=1,2,3\). A conclusion of the algorithm is to fast solve the resulting system from the Legendre Galerkin spectral method for Poisson equations with Dirichlet boundary conditions, which has a complexity of \({\mathcal {O}}(N^d)\). To further speed up the PCG method, an algorithm is developed for fast matrix-vector multiplications by the resulting matrix of Legendre-Galerkin spectral discretization, without the need to explicitly form it. The complexity of the fast matrix-vector multiplications is of \({\mathcal {O}}(N^d (\log _2 N)^{2})\). In view that T is independent of N in one dimension and is set to be of order \({\mathcal {O}}(\log _2 N)\) in two and three dimensions, the PCG method has a \({\mathcal {O}}(N^d (\log _2 N)^{2d})\) quasi-optimal complexity for a d dimensional domain with \((N-1)^d\) unknows, \(d=1,2,3\). In addition, a fast direct solver for the three-dimensional Poisson equation is developed, which is of \({\mathcal {O}}(N^{3} (\log _2 N)^{2})\) and improves the existing results on the computational complexity. Numerical examples are given to demonstrate the efficiency of proposed preconditioners and the algorithm for fast matrix-vector multiplications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Auteri, F., Quartapelle, L.: Galerkin-Legendre spectral method for the 3D Helmholtz equation. J. Comput. Phys. 161, 454–483 (2000)

    Article  MathSciNet  Google Scholar 

  2. Canuto, C., Quarteroni, A.: Preconditioner minimal residual methods for Chebyshev spectral calculations. J. Comput. Phys. 60, 315–337 (1985)

    Article  MathSciNet  Google Scholar 

  3. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer-Verlag, Berlin, Heidelberg (2006)

    Book  Google Scholar 

  4. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer-Verlag, Berlin (1987)

    MATH  Google Scholar 

  5. Coutsias, E., Hagstrom, T., Hesthaven, J.S., Torres, D.: Integration preconditioners for differential operators in spectral \(\tau \)-methods. In: Proceedings of the Third International Conference on Spectral and High Order Methods, Houston, TX, pp. 21–38. (1996)

  6. Carlitz, L.: The product of two ultraspherical polynomials. Proc. Glasgow Math. Assoc. 5, 76–79 (1961)

    Article  MathSciNet  Google Scholar 

  7. Concus, P., Golub, G.H.: Use of fast direct methods for the efficient numerical solution of nonseparable elliptic equations. SIAM J. Numer. Anal. 10, 1103–1120 (1973)

    Article  MathSciNet  Google Scholar 

  8. Deville, M.O., Mund, E.H.: Chebyshev pseudospectral solution of second-order elliptic equations with finite element preconditioning. J. Comput. Phys. 60, 517–533 (1985)

    Article  MathSciNet  Google Scholar 

  9. Deville, M.O., Mund, E.H.: Finite-element preconditioning for pseudospectral solutions of elliptic problems. SIAM J. Sci. Stat. Comput. 11, 311–342 (1990)

    Article  MathSciNet  Google Scholar 

  10. Fenn, M., Potts, D.: Fast summation based on fast trigonometric transforms at non-equispaced nodes. Numer. Linear Algebra Appl. 12, 161–169 (2005)

    Article  MathSciNet  Google Scholar 

  11. Fang, Z., Shen, J., Sun, H.: Preconditioning techniques in Chebyshev collocation method for elliptic equations. Inter. J. Numer. Anal. Model. 15, 277–287 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications. In: CBMS-NSF Regional Conference Series in Mathematics, 26, SIAM, Philadelphia (1977)

  13. Hesthaven, J.: Integration preconditioning of pseudospectral operators. I. Basic linear operators. SIAM J. Numer. Anal. 35, 1571–1593 (1998)

    Article  MathSciNet  Google Scholar 

  14. Hale, N., Townsend, A.: A fast, simple, and stable Chebyshev-Legendre transform using an asymptotic formula. SIAM J. Sci. Comput. 36, A148–A167 (2014)

    Article  MathSciNet  Google Scholar 

  15. Hale, N., Townsend, A.: A fast FFT-based discrete Legendre transform. IMA J. Numer. Anal. 36, 1670–1684 (2016)

    Article  MathSciNet  Google Scholar 

  16. Iserles, A.: A fast and simple algorithm for the computation of Legendre coefficients. Numer. Math. 117, 529–553 (2011)

    Article  MathSciNet  Google Scholar 

  17. Kim, S.D., Parter, S.V.: Preconditioning Chebyshev spectral collocation method for elliptic partial differential equations. SIAM J. Numer. Anal. 33, 2375–2400 (1996)

    Article  MathSciNet  Google Scholar 

  18. Kim, S.D., Parter, S.V.: Preconditioning Chebyshev spectral collocation by finite difference operators. SIAM J. Numer. Anal. 34, 939–958 (1997)

    Article  MathSciNet  Google Scholar 

  19. Keiner, J., Kunis, S., Potts, D.: Using NFFT 3-a software library for various nonequispaced fast Fourier transforms. ACM Trans. Math. Softw. 36, 1–30 (2009)

    Article  MathSciNet  Google Scholar 

  20. Kunis, S.: Nonequispaced fast Fourier transforms without oversampling. PAMM 8, 10977–10978 (2008)

    Article  MathSciNet  Google Scholar 

  21. Potts, D.: Fast algorithms for discrete polynomial transforms on arbitrary grids. Linear Algebra Appl. 366, 353–370 (2003). (Special issue on structured matrices: analysis, algorithms and applications (Cortona, 2000))

  22. Shen, J.: Efficient spectral-Galerkin methods III: polar and cylindrical geometries. SIAM J. Sci. Comput. 18, 1583–1604 (1997)

    Article  MathSciNet  Google Scholar 

  23. Shen, J.: Efficient Chebyshev-Legendre Galerkin methods for elliptic problems. In: Ilin, A.V., Scott, R. (eds.) Proceedings of the ICOSAHOM’95, Houston J. Math., pp. 233–240. (1996)

  24. Shen, J., Wang, Y.W., Xia, J.L.: Fast structured direct spectral methods for differential equations with variable coefficients. SIAM J. Sci. Comput. 38, A28–A54 (2016)

    Article  Google Scholar 

  25. Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press of China, Beijing (2006)

    MATH  Google Scholar 

  26. Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications. Springer Series in Computational Mathematics, Springer, Berlin (2011)

    Book  Google Scholar 

  27. Shen, J., Wang, F., Xu, J.: A finite element multigrid preconditioner for chebyshev collocation methods. Appl. Numer. Math. 33, 471–477 (2000)

    Article  MathSciNet  Google Scholar 

  28. Shen, J.: On fast direct Poisson solver, inf-sup constant and iterative Stokes solver by Legendre Galerkin method. J. Comput. Phys. 116, 184–188 (1995)

    Article  MathSciNet  Google Scholar 

  29. Shen, J.: Efficient spectral-Galerkin method I. Direct solvers for second- and fourth-order equations using Legendre polynomials. SIAM J. Sci. Comput. 15, 1489–1505 (1994)

    Article  MathSciNet  Google Scholar 

  30. Swarztrauber, P.N.: A direct method for the discrete solution of separable elliptic equations. SIAM J. Numer. Anal. 11, 1136–1150 (1974)

    Article  MathSciNet  Google Scholar 

  31. Saad, Y.: Iterative Methods for Sparse Linear Systems, 3rd edn. PWS Pub Co., (2000)

  32. Tygert, M.: Recurrence relations and fast algorithms. Appl. Comput. Harmon. Anal. 28, 121–128 (2010)

    Article  MathSciNet  Google Scholar 

  33. Trefethen, L.N., Trummer, M.R.: An instability phenomenon in spectral methods. SIAM J. Numer. Anal. 24, 1008–1023 (1987)

    Article  MathSciNet  Google Scholar 

  34. Wang, L.L., Samson, M.D., Zhao, X.: A well-conditioned collocation method using a pseudospectral integration matrix. SIAM J. Sci. Comput. 36, A907–A929 (2014)

    Article  MathSciNet  Google Scholar 

  35. Wang, H., Xiang, S.: On the convergence rates of Legendre approximation. Math. Comput. 81, 861–877 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the National Natural Science Foundation of China (NSFC 11625101 and 11421101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suna Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diao, X., Hu, J. & Ma, S. Preconditioned Legendre Spectral Galerkin Methods for the Non-separable Elliptic Equation. J Sci Comput 91, 12 (2022). https://doi.org/10.1007/s10915-021-01755-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01755-x

Keywords

Mathematics Subject Classification

Navigation