Skip to main content
Log in

Kinetic Functions for Nonclassical Shocks, Entropy Stability, and Discrete Summation by Parts

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We study nonlinear hyperbolic conservation laws with non-convex flux in one space dimension and, for a broad class of numerical methods based on summation by parts operators, we compute numerically the kinetic functions associated with each scheme. As established by LeFloch and collaborators, kinetic functions (for continuous or discrete models) uniquely characterize the macro-scale dynamics of small-scale dependent, undercompressive, nonclassical shock waves. We show here that various entropy-dissipative numerical schemes can yield nonclassical solutions containing classical shocks, including Fourier methods with (super-) spectral viscosity, finite difference schemes with artificial dissipation, discontinuous Galerkin schemes with or without modal filtering, and TeCNO schemes. We demonstrate numerically that entropy stability does not imply uniqueness of the limiting numerical solutions for scalar conservation laws in one space dimension, and we compute the associated kinetic functions in order to distinguish between these schemes. In addition, we design entropy-dissipative schemes for the Keyfitz–Kranzer system whose solutions are measures with delta shocks. This system illustrates the fact that entropy stability does not imply boundedness under grid refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Berthon, C., Coquel, F., LeFloch, P.G.: Why many theories of shock waves are necessary: kinetic relations for non-conservative systems. Proc. R. Soc. Edinb. Sect. A 142(1), 1–37 (2012). https://doi.org/10.1017/S0308210510001009

    Article  MathSciNet  MATH  Google Scholar 

  2. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017). https://doi.org/10.1137/141000671. arXiv:1411.1607 [cs.MS]

  3. Carpenter, M.H., Gottlieb, D., Abarbanel, S.: Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes. J. Comput. Phys. 111(2), 220–236 (1994). https://doi.org/10.1006/jcph.1994.1057

    Article  MathSciNet  MATH  Google Scholar 

  4. Carpenter, M.H., Nordström, J., Gottlieb, D.: A stable and conservative interface treatment of arbitrary spatial accuracy. J. Comput. Phys. 148(2), 341–365 (1999). https://doi.org/10.1006/jcph.1998.6114

    Article  MathSciNet  MATH  Google Scholar 

  5. Castro, M.J., LeFloch, P.G., Muñoz-Ruiz, M.L., Parés, C.: Why many theories of shock waves are necessary: convergence error in formally path-consistent schemes. J. Comput. Phys. 227(17), 8107–8129 (2008). https://doi.org/10.1016/j.jcp.2008.05.012

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, T., Shu, C.W.: Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws. J. Comput. Phys. 345, 427–461 (2017). https://doi.org/10.1016/j.jcp.2017.05.025

    Article  MathSciNet  MATH  Google Scholar 

  7. Clawpack Development Team: Clawpack software (2019)

  8. Condat, L.: A direct algorithm for 1-D total variation denoising. IEEE Signal Process. Lett. 20(11), 1054–1057 (2013). https://doi.org/10.1109/LSP.2013.2278339

    Article  Google Scholar 

  9. Dafermos, C.M.: The entropy rate admissibility criterion for solutions of hyperbolic conservation laws. J. Differ. Equ. 14(2), 202–212 (1973). https://doi.org/10.1016/0022-0396(73)90043-0

    Article  MathSciNet  MATH  Google Scholar 

  10. De Lellis, C., Otto, F., Westdickenberg, M.: Minimal entropy conditions for Burgers equation. Q. Appl. Math. 62(4), 687–700 (2004). https://doi.org/10.1090/qam/2104269

    Article  MathSciNet  MATH  Google Scholar 

  11. Fernández, D.C.D.R., Boom, P.D., Zingg, D.W.: A generalized framework for nodal first derivative summation-by-parts operators. J. Comput. Phys. 266, 214–239 (2014). https://doi.org/10.1016/j.jcp.2014.01.038

    Article  MathSciNet  MATH  Google Scholar 

  12. Fernández, D.C.D.R., Hicken, J.E., Zingg, D.W.: Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations. Comput. Fluids 95, 171–196 (2014). https://doi.org/10.1016/j.compfluid.2014.02.016

    Article  MathSciNet  MATH  Google Scholar 

  13. Fisher, T.C., Carpenter, M.H.: High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains. J. Comput. Phys. 252, 518–557 (2013). https://doi.org/10.1016/j.jcp.2013.06.014

    Article  MathSciNet  MATH  Google Scholar 

  14. Fjordholm, U.S.: High-order accurate entropy stable numerical schemes for hyperbolic conservation laws. Ph.D. Thesis, ETH Zürich (2013). https://doi.org/10.3929/ethz-a-007622508

  15. Fjordholm, U.S., Käppeli, R., Mishra, S., Tadmor, E.: Construction of approximate entropy measure-valued solutions for hyperbolic systems of conservation laws. Found. Comput. Math. 17, 763–827 (2017). https://doi.org/10.1007/s10208-015-9299-z

    Article  MathSciNet  MATH  Google Scholar 

  16. Fjordholm, U.S., Mishra, S., Tadmor, E.: Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50(2), 544–573 (2012). https://doi.org/10.1137/110836961

    Article  MathSciNet  MATH  Google Scholar 

  17. Fjordholm, U.S., Mishra, S., Tadmor, E.: ENO reconstruction and ENO interpolation are stable. Found. Comput. Math. 13(2), 139–159 (2013). https://doi.org/10.1007/s10208-012-9117-9

    Article  MathSciNet  MATH  Google Scholar 

  18. Fjordholm, U.S., Mishra, S., Tadmor, E.: On the computation of measure-valued solutions. Acta Numerica 25, 567–679 (2016). https://doi.org/10.1017/S0962492916000088

    Article  MathSciNet  MATH  Google Scholar 

  19. Gassner, G.J.: A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35(3), A1233–A1253 (2013). https://doi.org/10.1137/120890144

    Article  MathSciNet  MATH  Google Scholar 

  20. Gassner, G.J., Svärd, M., Hindenlang, F.J.: Stability issues of entropy-stable and/or split-form high-order schemes (2020). arXiv:2007.09026 [math.NA]

  21. Guo, B.Y., Ma, H.P., Tadmor, E.: Spectral vanishing viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal. 39(4), 1254–1268 (2001)

    Article  MathSciNet  Google Scholar 

  22. Hayes, B.T., LeFloch, P.G.: Non-classical shocks and kinetic relations: scalar conservation laws. Arch. Ration. Mech. Anal. 139(1), 1–56 (1997). https://doi.org/10.1007/s002050050046

    Article  MathSciNet  MATH  Google Scholar 

  23. Hayes, B.T., LeFloch, P.G.: Nonclassical shocks and kinetic relations: finite difference schemes. SIAM J. Numer. Anal. 35(6), 2169–2194 (1998). https://doi.org/10.1137/S0036142997315998

    Article  MathSciNet  MATH  Google Scholar 

  24. Hesthaven, J., Kirby, R.: Filtering in Legendre spectral methods. Math. Comput. 77(263), 1425–1452 (2008). https://doi.org/10.1090/S0025-5718-08-02110-8

    Article  MathSciNet  MATH  Google Scholar 

  25. Hicken, J.E.: Entropy-stable, high-order summation-by-parts discretizations without interface penalties. J. Sci. Comput. 82(2), 50 (2020). https://doi.org/10.1007/s10915-020-01154-8

    Article  MathSciNet  MATH  Google Scholar 

  26. Hicken, J.E., Fernández, D.C.D.R., Zingg, D.W.: Multidimensional summation-by-parts operators: general theory and application to simplex elements. SIAM J. Sci. Comput. 38(4), A1935–A1958 (2016). https://doi.org/10.1137/15M1038360

    Article  MathSciNet  MATH  Google Scholar 

  27. Hou, T.Y., LeFloch, P.G.: Why nonconservative schemes converge to wrong solutions: error analysis. Math. Comput. 62(206), 497–530 (1994). https://doi.org/10.1090/S0025-5718-1994-1201068-0

    Article  MathSciNet  MATH  Google Scholar 

  28. Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: entropy production at shocks. J. Comput. Phys. 228(15), 5410–5436 (2009). https://doi.org/10.1016/j.jcp.2009.04.021

    Article  MathSciNet  MATH  Google Scholar 

  29. Ketcheson, D.I.: Highly efficient strong stability-preserving Runge–Kutta methods with low-storage implementations. SIAM J. Sci. Comput. 30(4), 2113–2136 (2008). https://doi.org/10.1137/07070485X

    Article  MathSciNet  MATH  Google Scholar 

  30. Ketcheson, D.I.: Relaxation Runge–Kutta methods: conservation and stability for inner-product norms. SIAM J. Numer. Anal. 57(6), 2850–2870 (2019). https://doi.org/10.1137/19M1263662. arXiv:1905.09847 [math.NA]

  31. Ketcheson, D.I., Mandli, K., Ahmadia, A.J., Alghamdi, A., De Luna, M.Q., Parsani, M., Knepley, M.G., Emmett, M.: Pyclaw: accessible, extensible, scalable tools for wave propagation problems. SIAM J. Sci. Comput. 34(4), C210–C231 (2012). https://doi.org/10.1137/110856976

    Article  MathSciNet  MATH  Google Scholar 

  32. Ketcheson, D.I., Parsani, M., LeVeque, R.J.: High-order wave propagation algorithms for hyperbolic systems. SIAM J. Sci. Comput. 35(1), A351–A377 (2013). https://doi.org/10.1137/110830320

    Article  MathSciNet  MATH  Google Scholar 

  33. Keyfitz, B.L.: Singular shocks: retrospective and prospective. Confluentes Mathematici 3(03), 445–470 (2011). https://doi.org/10.1142/S1793744211000424

    Article  MathSciNet  MATH  Google Scholar 

  34. Keyfitz, B.L., Kranzer, H.C.: Spaces of weighted measures for conservation laws with singular shock solutions. J. Differ. Equ. 118(2), 420–451 (1995). https://doi.org/10.1006/jdeq.1995.1080

    Article  MathSciNet  MATH  Google Scholar 

  35. Kopriva, D.A., Gassner, G.J.: On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods. J. Sci. Comput. 44(2), 136–155 (2010). https://doi.org/10.1007/s10915-010-9372-3

    Article  MathSciNet  MATH  Google Scholar 

  36. Kreiss, H.O., Scherer, G.: Finite element and finite difference methods for hyperbolic partial differential equations. In: de Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 195–212. Academic Press, New York (1974)

    Chapter  Google Scholar 

  37. LeFloch, P.G.: An existence and uniqueness result for two nonstrictly hyperbolic systems. In: Nonlinear Evolution Equations that Change Type, vol. 27, Springer, New York, pp. 126–138 (1990). https://doi.org/10.1007/978-1-4613-9049-7_10

  38. LeFloch, P.G.: An introduction to nonclassical shocks of systems of conservation laws. In: Kröner, D., Ohlberger, M., Rohde, C. (eds.) An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, Lecture Notes in Computational Science and Engineering, vol. 5, Springer, Berlin, pp. 28–72(1999). https://doi.org/10.1007/978-3-642-58535-7_2

  39. LeFloch, P.G.: Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves. Birkhäuser, Basel (2002). https://doi.org/10.1007/978-3-0348-8150-0

  40. LeFloch, P.G.: Kinetic relations for undercompressive shock waves. Physical, mathematical, and numerical issues. In: Nonlinear Partial Differential Equations and Hyperbolic Wave Phenomena. Contemporary Mathematics, vol. 526, pp. 237–272. American Mathematical Society, Providence (2010)

    Chapter  Google Scholar 

  41. LeFloch, P.G., Mercier, J.M., Rohde, C.: Fully discrete, entropy conservative schemes of arbitrary order. SIAM J. Numer. Anal. 40(5), 1968–1992 (2002). https://doi.org/10.1137/S003614290240069X

    Article  MathSciNet  MATH  Google Scholar 

  42. LeFloch, P.G., Mishra, S.: Numerical methods with controlled dissipation for small-scale dependent shocks. Acta Numerica 23, 743–816 (2014). https://doi.org/10.1017/S0962492914000099

    Article  MathSciNet  MATH  Google Scholar 

  43. LeFloch, P.G., Mohammadian, M.: Why many theories of shock waves are necessary: kinetic functions, equivalent equations, and fourth-order models. J. Comput. Phys. 227(8), 4162–4189 (2008). https://doi.org/10.1016/j.jcp.2007.12.026

    Article  MathSciNet  MATH  Google Scholar 

  44. LeFloch, P.G., Rohde, C.: High-order schemes, entropy inequalities, and nonclassical shocks. SIAM J. Numer. Anal. 37(6), 2023–2060 (2000). https://doi.org/10.1137/S0036142998345256

    Article  MathSciNet  MATH  Google Scholar 

  45. LeFloch, P.G., Tesdall, A.: Well-controlled entropy dissipation (WCED) schemes for capturing diffusive-dispersive shocks (in preparation)

  46. LeFloch, P.G., Tesdall, A.: Augmented hyperbolic models and diffusive-dispersive shocks (2019). arXiv:1912.03563 [math.AP]

  47. Maday, Y., Kaber, S.M.O., Tadmor, E.: Legendre pseudospectral viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal. 30(2), 321–342 (1993)

    Article  MathSciNet  Google Scholar 

  48. Maday, Y., Tadmor, E.: Analysis of the spectral vanishing viscosity method for periodic conservation laws. SIAM J. Numer. Anal. 26(4), 854–870 (1989). https://doi.org/10.1137/0726047

    Article  MathSciNet  MATH  Google Scholar 

  49. Mandli, K.T., Ahmadia, A.J., Berger, M., Calhoun, D., George, D.L., Hadjimichael, Y., Ketcheson, D.I., Lemoine, G.I., LeVeque, R.J.: Clawpack: building an open source ecosystem for solving hyperbolic PDEs. PeerJ Comput. Sci. 2, e68 (2016). https://doi.org/10.7717/peerj-cs.68

    Article  Google Scholar 

  50. Mattsson, K., Svärd, M., Nordström, J.: Stable and accurate artificial dissipation. J. Sci. Comput. 21(1), 57–79 (2004). https://doi.org/10.1023/B:JOMP.0000027955.75872.3f

    Article  MathSciNet  MATH  Google Scholar 

  51. Mitsotakis, D., Ranocha, H., Ketcheson, D.I., Süli, E.: A conservative fully-discrete numerical method for the regularised shallow water wave equations (2020). arXiv:2009.09641 [math.NA]

  52. Nordström, J.: A roadmap to well posed and stable problems in computational physics. J. Sci. Comput. 71(1), 365–385 (2017). https://doi.org/10.1007/s10915-016-0303-9

    Article  MathSciNet  MATH  Google Scholar 

  53. Nordström, J., Björck, M.: Finite volume approximations and strict stability for hyperbolic problems. Appl. Numer. Math. 38(3), 237–255 (2001). https://doi.org/10.1016/S0168-9274(01)00027-7

    Article  MathSciNet  MATH  Google Scholar 

  54. Öffner, P., Glaubitz, J., Ranocha, H.: Stability of correction procedure via reconstruction with summation-by-parts operators for Burgers’ equation using a polynomial chaos approach. ESAIM Math. Model. Numer. Anal. (ESAIM: M2AN) 52(6), 2215–2245 (2019). https://doi.org/10.1051/m2an/2018072. arXiv:1703.03561 [math.NA]

  55. Panov, E.Y.: Uniqueness of the solution of the Cauchy problem for a first order quasilinear equation with one admissible strictly convex entropy. Math. Notes 55(5), 517–525 (1994). https://doi.org/10.1007/BF02110380

    Article  MathSciNet  Google Scholar 

  56. Ranocha, H.: Shallow water equations: split-form, entropy stable, well-balanced, and positivity preserving numerical methods. GEM Int. J. Geomath. 8(1), 85–133 (2017). https://doi.org/10.1007/s13137-016-0089-9. arXiv:1609.08029 [math.NA]

  57. Ranocha, H.: Comparison of some entropy conservative numerical fluxes for the Euler equations. J. Sci. Comput. 76(1), 216–242 (2018). https://doi.org/10.1007/s10915-017-0618-1. arXiv:1701.02264 [math.NA]

  58. Ranocha, H.: Generalised summation-by-parts operators and entropy stability of numerical methods for hyperbolic balance laws. Ph.D. Thesis, TU Braunschweig (2018)

  59. Ranocha, H.: Generalised summation-by-parts operators and variable coefficients. J. Comput. Phys. 362, 20–48 (2018). https://doi.org/10.1016/j.jcp.2018.02.021. arXiv:1705.10541 [math.NA]

  60. Ranocha, H.: Mimetic properties of difference operators: product and chain rules as for functions of bounded variation and entropy stability of second derivatives. BIT Numer. Math. 59(2), 547–563 (2019). https://doi.org/10.1007/s10543-018-0736-7. arXiv:1805.09126 [math.NA]

  61. Ranocha, H., Dalcin, L., Parsani, M.: Fully-discrete explicit locally entropy-stable schemes for the compressible Euler and Navier–Stokes equations. Comput. Math. Appl. 80(5), 1343–1359 (2020). https://doi.org/10.1016/j.camwa.2020.06.016. arXiv:2003.08831 [math.NA]

  62. Ranocha, H., Gassner, G.J.: Preventing pressure oscillations does not fix local linear stability issues of entropy-based split-form high-order schemes (2020). arXiv:2009.13139 [math.NA]

  63. Ranocha, H., Glaubitz, J., Öffner, P., Sonar, T.: Stability of artificial dissipation and modal filtering for flux reconstruction schemes using summation-by-parts operators. Appl. Numer. Math. 128, 1–23 (2018). https://doi.org/10.1016/j.apnum.2018.01.019. See also arXiv:1606.00995 [math.NA] and arXiv:1606.01056 [math.NA]

  64. Ranocha, H., Ketcheson, D.I.: Relaxation Runge-Kutta methods for Hamiltonian problems. J. Sci. Comput. 84(1) (2020). https://doi.org/10.1007/s10915-020-01277-y. arXiv:2001.04826 [math.NA]

  65. Ranocha, H., Lóczi, L., Ketcheson, D.I.: General relaxation methods for initial-value problems with application to multistep schemes. Numerische Mathematik (2020). https://doi.org/10.1007/s00211-020-01158-4. arXiv:2003.03012 [math.NA]

  66. Ranocha, H., Mitsotakis, D., Ketcheson, D.I.: A broad class of conservative numerical methods for dispersive wave equations (2020). Accept. Commun. Comput. Phys. arXiv:2006.14802 [math.NA]

  67. Ranocha, H., Öffner, P., Sonar, T.: Summation-by-parts operators for correction procedure via reconstruction. J. Comput. Phys. 311, 299–328 (2016). https://doi.org/10.1016/j.jcp.2016.02.009. arXiv:1511.02052 [math.NA]

  68. Ranocha, H., Öffner, P., Sonar, T.: Extended skew-symmetric form for summation-by-parts operators and varying Jacobians. J. Comput. Phys. 342, 13–28 (2017). https://doi.org/10.1016/j.jcp.2017.04.044. arXiv:1511.08408 [math.NA]

  69. Ranocha, H., Sayyari, M., Dalcin, L., Parsani, M., Ketcheson, D.I.: Relaxation Runge–Kutta methods: fully-discrete explicit entropy-stable schemes for the compressible Euler and Navier–Stokes equations. SIAM J. Sci. Comput. 42(2), A612–A638 (2020). https://doi.org/10.1137/19M1263480. arXiv:1905.09129 [math.NA]

  70. Sanders, R., Sever, M.: The numerical study of singular shocks regularized by small viscosity. J. Sci. Comput. 19(1–3), 385–404 (2003). https://doi.org/10.1023/A:1025320412541

    Article  MathSciNet  MATH  Google Scholar 

  71. Schochet, S.: The rate of convergence of spectral-viscosity methods for periodic scalar conservation laws. SIAM J. Numer. Anal. 27(5), 1142–1159 (1990). https://doi.org/10.1137/0727066

    Article  MathSciNet  MATH  Google Scholar 

  72. Strand, B.: Summation by parts for finite difference approximations for \(d/dx\). J. Comput. Phys. 110(1), 47–67 (1994). https://doi.org/10.1006/jcph.1994.1005

    Article  MathSciNet  MATH  Google Scholar 

  73. Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268, 17–38 (2014). https://doi.org/10.1016/j.jcp.2014.02.031

    Article  MathSciNet  MATH  Google Scholar 

  74. Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comput. 49(179), 91–103 (1987). https://doi.org/10.1090/S0025-5718-1987-0890255-3

    Article  MathSciNet  MATH  Google Scholar 

  75. Tadmor, E.: Convergence of spectral methods for nonlinear conservation laws. SIAM J. Numer. Anal. 26(1), 30–44 (1989). https://doi.org/10.1137/0726003

    Article  MathSciNet  MATH  Google Scholar 

  76. Tadmor, E.: Super viscosity and spectral approximations of nonlinear conservation laws. In: Baines, M.J., Morton, K.W. (eds.) Quality and Reliability of Large–Eddy Simulations II, pp. 69–82. Clarendon Press, Oxford (1993)

    Google Scholar 

  77. Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numerica 12, 451–512 (2003). https://doi.org/10.1017/S0962492902000156

    Article  MathSciNet  MATH  Google Scholar 

  78. Tadmor, E., Waagan, K.: Adaptive spectral viscosity for hyperbolic conservation laws. SIAM J. Sci. Comput. 34(2), A993–A1009 (2012). https://doi.org/10.1137/110836456

    Article  MathSciNet  MATH  Google Scholar 

  79. Vandeven, H.: Family of spectral filters for discontinuous problems. J. Sci. Comput. 6(2), 159–192 (1991). https://doi.org/10.1007/BF01062118

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank David Ketcheson for very interesting discussions. This research work was supported by the King Abdullah University of Science and Technology (KAUST). The first author (PLF) was partially supported by the Innovative Training Network (ITN) Grant 642768 (ModCompShocks). The second author (HR) was partially supported by the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) under Grant SO 363/14-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe G. LeFloch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LeFloch, P.G., Ranocha, H. Kinetic Functions for Nonclassical Shocks, Entropy Stability, and Discrete Summation by Parts. J Sci Comput 87, 55 (2021). https://doi.org/10.1007/s10915-021-01463-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01463-6

Keywords

Mathematics Subject Classification

Navigation