Skip to main content
Log in

Strong Stability Preserving Properties of Composition Runge–Kutta Schemes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper strong stability preserving (SSP) properties of Runge–Kutta methods obtained by composing k different schemes with different step sizes are studied. The SSP coefficient of the composition method is obtained and an upper bound on this coefficient is given. Some examples are shown. In particular, it is proven that the optimal \(n^2\)-stage third order explicit Runge–Kutta methods obtained by Ketcheson (SIAM J Sci Comput 30(4):2113–2136, 2008) are composition of first order SSP schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calvo, M.P., Sanz-Serna, J.M.: Numerical Hamiltonian Problems. Chapman & Hall, London (1994)

    MATH  Google Scholar 

  2. Cavaglieri, D., Bewley, T.: Low-storage implicit/explicit Runge–Kutta schemes for the simulation of stiff high-dimensional ODE systems. J. Comput. Phys. 286, 172–193 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-diminishing property in general Runge–Kutta methods. SIAM J. Numer. Anal. 42(3), 1073–1093 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ferracina, L., Spijker, M.N.: An extension and analysis of the Shu–Osher representation of Runge–Kutta methods. Math. Comput. 74, 201–219 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ferracina, L., Spijker, M.N.: Strong stability of singly-diagonally-implicit Runge–Kutta methods. Appl. Numer. Math. 58(11), 1675–1686 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gottlieb, S., Ketcheson, D.I., Shu, C.W.: High order strong stability preserving time discretizations. J. Sci. Comput. 38(3), 251–289 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gottlieb, S., Ketcheson, D.I., Shu, C.W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific, Singapore (2011)

    Book  MATH  Google Scholar 

  8. Gottlieb, S., Shu, C.W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67(221), 73–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  11. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff Problems, 2 Revised edn. Springer, Berlin (1993)

    MATH  Google Scholar 

  12. Higueras, I.: On strong stability preserving time discretization methods. J. Sci. Comput. 21(2), 193–223 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Higueras, I.: Representations of Runge–Kutta methods and strong stability preserving methods. SIAM J. Numer. Anal. 43(3), 924–948 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Higueras, I.: Strong stability for additive Runge–Kutta methods. SIAM J. Numer. Anal. 44(4), 1735–1758 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hundsdorfer, W., Spijker, M.N.: Boundedness and strong stability of Runge–Kutta methods. Math. Comput. 80, 863–886 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Iserles, A.: Composite exponential approximations. Math. Comput. 38(157), 99–112 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Iserles, A.: Composite methods for numerical solution of stiff systems of ODE’s. SIAM J. Numer. Anal. 21(2), 340–351 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ketcheson, D.I.: Highly efficient strong stability preserving Runge–Kutta methods with low-storage implementations. SIAM J. Sci. Comput. 30(4), 2113–2136 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ketcheson, D.I.: Runge–Kutta methods with minimum storage implementations. J. Comput. Phys. 229(5), 1763–1773 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ketcheson, D.I., Macdonald, C.B., Gottlieb, S.: Optimal implicit strong stability preserving Runge–Kutta methods. Appl. Numer. Math. 59(2), 373–392 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ketcheson, D.I., Parsani, M., Ahmadia, A.J.: RK-Opt: software for the design of Runge–Kutta methods, version 0.2 (2013). http://numerics.kaust.edu.sa/RK-opt

  22. Kraaijevanger, J.F.B.M.: Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems. Numer. Math. 48(3), 303–322 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kraaijevanger, J.F.B.M.: Contractivity of Runge–Kutta methods. BIT 31(3), 482–528 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pandal, A., Pastor, J.M., García-Oliver, J.M., Baldwin, E., Schmidt, D.P.: A consistent, scalable model for Eulerian spray modeling. Int. J. Multiph. Flow 83, 162–171 (2016)

    Article  MathSciNet  Google Scholar 

  25. Ruuth, S.J.: Global optimization of explicit strong-stability-preserving Runge–Kutta methods. Math. Comput. 75(253), 183–208 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ruuth, S.J., Spiteri, R.J.: High-order strong-stability-preserving Runge–Kutta methods with downwind-biased spatial discretizations. SIAM J. Numer. Anal. 42, 974 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shu, C.W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Comput. 9(6), 1073–1084 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shu, C.W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. Spijker, M.N.: Contractivity in the numerical solution of initial value problems. Numer. Math. 42(3), 271–290 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  30. Spijker, M.N.: Stepsize restrictions for stability of one-step methods in the numerical solution of initial value problems. Math. Comput. 45(172), 377–392 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  31. Spijker, M.N.: Stepsize conditions for general monotonicity in numerical initial value problems. SIAM J. Numer. Anal. 45(3), 1226–1245 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong stability preserving time discretization methods. SIAM J. Numer. Anal. 40(2), 469–491 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Spiteri, R.J., Ruuth, S.J.: Non-linear evolution using optimal fourth-order strong-stability-preserving Runge–Kutta methods. Math. Comput. Simul. 62(1–2), 125–135 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. van de Griend, J.A., Kraaijevanger, J.F.B.M.: Absolute monotonicity of rational functions occurring in the numerical solution of initial value problems. Numer. Math. 49, 413–424 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Roldán.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by Ministerio de Economía y Competividad (Spain), Project MTM2016-77735-C3-2-P.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higueras, I., Roldán, T. Strong Stability Preserving Properties of Composition Runge–Kutta Schemes. J Sci Comput 80, 784–807 (2019). https://doi.org/10.1007/s10915-019-00956-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00956-9

Keywords

Mathematics Subject Classification

Navigation