Skip to main content
Log in

A Gauss–Jacobi Kernel Compression Scheme for Fractional Differential Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A scheme for approximating the kernel w of the fractional \(\alpha \)-integral by a linear combination of exponentials is proposed and studied. The scheme is based on the application of a composite Gauss–Jacobi quadrature rule to an integral representation of w. This results in an approximation of w in an interval \([\delta ,T]\), with \(0<\delta \), which converges rapidly in the number J of quadrature nodes associated with each interval of the composite rule. Using error analysis for Gauss–Jacobi quadratures for analytic functions, an estimate of the relative pointwise error is obtained. The estimate shows that the number of terms required for the approximation to satisfy a prescribed error tolerance is bounded for all \(\alpha \in (0,1)\), and that J is bounded for \(\alpha \in (0,1)\), \(T>0\), and \(\delta \in (0,T)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Yuste, S.B., Acedo, L.: An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42(5), 1862–1874 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38(1), A146–A170 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brunner, H., Schötzau, D.: hp-Discontinuous Galerkin time-stepping for volterra integrodifferential equations. SIAM J. Numer. Anal. 44(1), 224–245 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lubich, C., Schädle, A.: Fast convolution for nonreflecting boundary conditions. SIAM J. Sci. Comput. 24(1), 161–182 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Schädle, A., López-Fernández, M., Lubich, C.: Fast and oblivious convolution quadrature. SIAM J. Sci. Comput. 28(2), 421–438 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. López-Fernández, M., Lubich, C., Schädle, A.: Adaptive fast and oblivious convolution in evolution equations with memory. SIAM J. Sci. Comput. 30(2), 1015–1037 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. López-Fernández, M., Palencia, C., Schädle, A.: A spectral order method for inverting sectorial Laplace transforms. SIAM J. Numer. Anal. 44(3), 1332–1350 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beylkin, G., Monzón, L.: Approximation by exponential sums revisited. Appl. Comput. Harmon. Anal. 28, 131–149 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, J.R.: A fast time stepping method for evaluating fractional integrals SIAM. J. Sci. Comput. 31(6), 4696–4714 (2010)

    MATH  Google Scholar 

  11. Baffet, D., Hesthaven, J.S.: A Kernel compression scheme for fractional differential equations. SIAM J. Numer. Anal. 55(2), 496–520 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zeng, F., Turner, I., Burrage, K.: A stable fast time-stepping method for fractional integral and derivative operators. arXiv:1703.05480 (2017)

  13. McLean, W.: Exponential sum approximations for \(t^{-\beta }\). arXiv:1606.00123 (2017)

  14. Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21(3), 650–678 (2017)

    Article  MathSciNet  Google Scholar 

  15. Baffet, D., Hesthaven, J.S.: High-order accurate adaptive kernel compression time-stepping schemes for fractional differential equations. J. Sci. Comput. 72(3), 1169–1195 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl 265(2), 229–248 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gautschi, W., Varga, R.S.: Error bounds for Gaussian quadrature of analytic functions. SIAM J. Numer. Anal. 20(6), 1170–1186 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Erdélyi, A.: Higher Transcendental Functions, vol. 2. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  19. Elliot, D.: Uniform asymptotic expansions of Jacobi polynomials and associated function. Math. Comp. 25(114), 309–315 (1971)

    Article  MathSciNet  Google Scholar 

  20. Olver, F.W.J.: The asymptotic solution of linear differential equations of the second order for large values of a parameter. Philos. Trans. R. Soc. A 247(930), 307–327 (1954)

    Article  MathSciNet  Google Scholar 

  21. Olver, F.W.J.: Uniform asymptotic expansions of linear second-order differential equations for large values of a parameter. Philos. Trans. R. Soc. A 250(984), 479–517 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  22. Garrappa, R.: The Mittag-Leffler Function, MATLAB Central File Exchange, 2014, file ID: 48154

Download references

Acknowledgements

The author declares that he has no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Baffet.

Appendix: A Technical Lemma

Appendix: A Technical Lemma

Estimate (4.7) of Lemma 4.2 relies on the infimum of

$$\begin{aligned} R_J\!\left( \ell \right) =\!\left( 3-\ell \right) ^{-1}\!\left( \ell +\sqrt{\ell ^2-1}\right) ^{-2J}\ , \end{aligned}$$
(A.1)

for \(\ell \in (1,3)\). It is a simple exercise to show that for each \(J\ge 1\), \(R_J\) has a unique minimum point in (1, 3) and to estimate the asymptotic behavior of that minimum, at the limit \(J\rightarrow \infty \). This is summarized in the following lemma.

Lemma A.1

For each \(J\ge 1\), \(R_J\) has a unique minimizer \(\ell _J\) in (1, 3) given by

$$\begin{aligned} \ell _J=\frac{3-\mu \sqrt{8+\mu ^2}}{1-\mu ^2}, \quad \mu =\frac{1}{2J}. \end{aligned}$$
(A.2)

In particular \(\ell _J\in (3/2,3)\), and at the limit \(J\rightarrow \infty \), there holds

$$\begin{aligned} R_J\!\left( \ell _J\right) \sim \frac{\mathrm {e}}{\sqrt{2}}\, J\!\left( 3+\sqrt{8}\right) ^{-2J}. \end{aligned}$$
(A.3)

Proof

The derivative of \(R_J\) is given by

$$\begin{aligned} R_J'\!\left( \ell \right) =\!\left( 3-\ell \right) ^{-2}\frac{\!\left( \ell +\sqrt{\ell ^2-1}\right) ^{-2J}}{\sqrt{\ell ^2-1}} \!\left( \sqrt{\ell ^2-1}-2J\!\left( 3-\ell \right) \right) . \end{aligned}$$
(A.4)

Thus, the critical points of \(R_J\), satisfy

$$\begin{aligned} \mu \sqrt{\ell ^2-1}=3-\ell , \quad \mu =\frac{1}{2J}. \end{aligned}$$
(A.5)

It is therefore clear that \(R_J\) has a unique critical point and that this point is the unique minimizer of \(R_J\) in (1, 3). By squaring the last equality, we find that \(\ell =\ell _J\) is a solution of the following equation

$$\begin{aligned} \!\left( 1-\mu ^2\right) \ell ^2-6\ell +9+\mu ^2=0. \end{aligned}$$
(A.6)

This equation has only one solution smaller than three given by

$$\begin{aligned} \ell _J=\frac{3-\mu \sqrt{8+\mu ^2}}{1-\mu ^2}, \quad \mu =\frac{1}{2J}. \end{aligned}$$
(A.7)

Indeed, there holds

$$\begin{aligned} \frac{3}{2}< 3-\frac{\sqrt{8+1/4}}{2}< \frac{3-\mu \sqrt{8+\mu ^2}}{1-\mu ^2} <\frac{3-\mu \sqrt{8\mu ^2+\mu ^2}}{1-\mu ^2}=3. \end{aligned}$$
(A.8)

At the limit where J tends to infinity, we have

$$\begin{aligned} \ell _J=3-\mu \sqrt{8}+3\mu ^2+O\!\left( \mu ^3\right) , \quad \mu =\frac{1}{2J} \end{aligned}$$
(A.9)

and therefore

$$\begin{aligned} R_J\!\left( \ell _J\right) = \frac{\mu ^{-1}}{\sqrt{8}\big (1+O\!\left( \mu \right) \big )} \!\left( \rho -\rho \mu +O\!\left( \mu ^2\right) \right) ^{-1/\mu } \end{aligned}$$
(A.10)

where \(\rho =3+\sqrt{8}\). Thus we recover

$$\begin{aligned} \begin{aligned} R_J\!\left( \ell _J\right)&\sim \frac{J}{\sqrt{2}}\rho ^{-2J} \!\left( 1-\mu \right) ^{-1/\mu } \sim \frac{\mathrm {e}}{\sqrt{2}}\, J\rho ^{-2J} \end{aligned}\end{aligned}$$
(A.11)

which completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baffet, D. A Gauss–Jacobi Kernel Compression Scheme for Fractional Differential Equations. J Sci Comput 79, 227–248 (2019). https://doi.org/10.1007/s10915-018-0848-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0848-x

Keywords

Navigation