Skip to main content
Log in

Solving 2D Linear Isotropic Elastodynamics by Means of Scalar Potentials: A New Challenge for Finite Elements

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work we present a method for the computation of numerical solutions of 2D homogeneous isotropic elastodynamics equations by solving scalar wave equations. These equations act on the potentials of a Helmholtz decomposition of the displacement field and are decoupled inside the propagation domain. We detail how these equations are coupled at the boundary depending on the nature of the boundary condition satisfied by the displacement field. After presenting the case of rigid boundary conditions, that presents no specific difficulty, we tackle the challenging case of free surface boundary conditions that presents severe stability issues if a straightforward approach is used. We introduce an adequate functional framework as well as a time domain mixed formulation to circumvent these issues. Numerical results confirm the stability of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Virieux, J.: P-SV wave propagation in heterogeneous media: velocity–stress finite-diference method. Geophysics 51(4), 889–901 (1986)

    Article  Google Scholar 

  2. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, vol. 5. Springer, Berlin (2012)

    MATH  Google Scholar 

  3. Glowinski, R., Pironneau, O.: Numerical methods for the first biharmonic equation and the two-dimensional Stokes problem. SIAM Rev. 21(2), 167–212 (1979)

    Article  MathSciNet  Google Scholar 

  4. Babuska, I., Osborn, J., Pitkäranta, J.: Analysis of mixed methods using mesh dependent norms. Math. Comput. 35(152), 1039–1062 (1980)

    Article  MathSciNet  Google Scholar 

  5. Komatitsch, D., Martin, R.: An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics 72(5), SM155–SM167 (2007)

    Article  Google Scholar 

  6. Burel, A., Imperiale, S., Joly, P.: Solving the homogeneous isotropic linear elastodynamics equations using potentials and finite elements. The case of the rigid boundary condition. Numer. Anal. Appl. 5(2), 136–143 (2012)

    Article  Google Scholar 

  7. Burel, A.: Contributions à la simulation numérique en élastodynamique: découplage des ondes P et S, modèles asymptotiques pour la traversée de couches minces. Ph.D. thesis, Université Paris Sud-Paris XI (2014)

  8. Gurtin, M.E.: An Introduction to Continuum Mechanics, vol. 158. Academic Press, Cambridge (1982)

    MATH  Google Scholar 

  9. Ciarlet, P.G.: Elasticité tridimensionnelle, vol. 1. Masson, Paris (1986)

    MATH  Google Scholar 

  10. Alonso Rodríguez, A., Valli, A.: Eddy Current Approximation of Maxwell Equations: Theory, Algorithms and Applications, vol. 4. Springer, Berlin (2010)

    MATH  Google Scholar 

  11. Lions, J.-L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications, vol. 1. Springer, Berlin (1972)

    MATH  Google Scholar 

  12. Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford (2003)

    Book  Google Scholar 

  13. Cherif, A., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21(9), 823–864 (1998)

    Article  MathSciNet  Google Scholar 

  14. Ciarlet, P.G.: The finite element method for elliptic problems. Classics in applied mathematics, vol. 40, pp. 1–511 (2002)

  15. Cohen, G.: Higher-Order Numerical Methods for Transient Wave Equations. Springer, Berlin (2002)

    Book  Google Scholar 

  16. Komatitsch, D., Tromp, J.: Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys. J. Int. 139(3), 806–822 (1999)

    Article  Google Scholar 

  17. Cohen, G., Joly, P., Roberts, J.E., Tordjman, N.: Higher order triangular finite elements with mass lumping for the wave equation. SIAM J. Numer. Anal. 38(6), 2047–2078 (2001)

    Article  MathSciNet  Google Scholar 

  18. Ciarlet, P.G.: On Korn’s inequality. Chin. Ann. Math.-Ser. B 31(5), 607–618 (2010)

    Article  MathSciNet  Google Scholar 

  19. Bochev, P., Lehoucq, R.B.: On the finite element solution of the pure Neumann problem. SIAM Rev. 47(1), 50–66 (2005)

    Article  MathSciNet  Google Scholar 

  20. de Castro, A.B., Gómez, D., Salgado, P.: Mathematical Models and Numerical Simulation in Electromagnetism, vol. 74. Springer, Berlin (2014)

    MATH  Google Scholar 

  21. Jiang, W., Liu, N., Tang, Y., Liu, Q.H.: Mixed finite element method for 2d vector Maxwell’s eigenvalue problem in anisotropic media. Prog. Electromagn. Res. 148, 159–170 (2014)

    Article  Google Scholar 

  22. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  Google Scholar 

Download references

Acknowledgements

The research of the first and fourth authors was partially funded by FEDER and the Spanish Ministry of Science and Innovation through Grants MTM2013-43745-R and MTM2017-86459-R and by Xunta de Galicia through grant ED431C 2017/60.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Joly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albella Martínez, J., Imperiale, S., Joly, P. et al. Solving 2D Linear Isotropic Elastodynamics by Means of Scalar Potentials: A New Challenge for Finite Elements. J Sci Comput 77, 1832–1873 (2018). https://doi.org/10.1007/s10915-018-0768-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0768-9

Keywords

Navigation