Skip to main content
Log in

Analysis of the Finite Element Method for the Laplace–Beltrami Equation on Surfaces with Regions of High Curvature Using Graded Meshes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We derive error estimates for the piecewise linear finite element approximation of the Laplace–Beltrami operator on a bounded, orientable, \(C^3\), surface without boundary on general shape regular meshes. As an application, we consider a problem where the domain is split into two regions: one which has relatively high curvature and one that has low curvature. Using a graded mesh we prove error estimates that do not depend on the curvature on the high curvature region. Numerical experiments are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Antonietti, P.F., Dedner, A., Madhavan, P., Stangalino, S., Stinner, B., Verani, M.: High order discontinuous Galerkin methods for elliptic problems on surfaces. SIAM J. Numer. Anal. 53(2), 1145–1171 (2015). https://doi.org/10.1137/140957172

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertalmío, M., Cheng, L.-T., Osher, S., Sapiro, G.: Variational problems and partial differential equations on implicit surfaces. J. Comput. Phys. 174(2), 759–780 (2001). https://doi.org/10.1006/jcph.2001.6937

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonito, A., Manuel Cascón, J., Morin, P., Mekchay, K., Nochetto, R.H.: High-Order AFEM for the Laplace–Beltrami Operator: Convergence Rates (2016). arXiv:1511.05019

    Article  MathSciNet  Google Scholar 

  4. Burman, E., Hansbo, P., Larson, M.G.: A stabilized cut finite element method for partial differential equations on surfaces: the Laplace–Beltrami operator. Comput. Methods Appl. Mech. Eng. 285, 188–207 (2015). https://doi.org/10.1016/j.cma.2014.10.044

    Article  MathSciNet  MATH  Google Scholar 

  5. Camacho, F., Demlow, A.: L2 and pointwise a posteriori error estimates for FEM for elliptic PDEs on surfaces. IMA J. Numer. Anal. 35(3), 1199–1227 (2015). https://doi.org/10.1093/imanum/dru036

    Article  MathSciNet  MATH  Google Scholar 

  6. Chernyshenko, A.Y., Olshanskii, M.A.: An adaptive octree finite element method for PDEs posed on surfaces. Comput. Methods Appl. Mech. Eng. 291, 146–172 (2015). https://doi.org/10.1016/j.cma.2015.03.025

    Article  MathSciNet  Google Scholar 

  7. Chernyshenko, A.Y., Olshanskii, M.A.: Non-degenerate Eulerian finite element method for solving PDEs on surfaces. Russian J. Numer. Anal. Math. Model. 28(2), 101–124 (2013). https://doi.org/10.1515/rnam-2013-0007

    Article  MathSciNet  MATH  Google Scholar 

  8. Cockburn, B., Demlow, A.: Hybridizable discontinuous Galerkin and mixed finite element methods for elliptic problems on surfaces. Math. Comput. 85(302), 2609–2638 (2016). https://doi.org/10.1090/mcom/3093

    Article  MathSciNet  MATH  Google Scholar 

  9. Deckelnick, K., Dziuk, G., Elliott, C.M., Heine, C.-J.: An h-narrow band finite-element method for elliptic equations on implicit surfaces. IMA J. Numer. Anal. 30(2), 351–376 (2010). https://doi.org/10.1093/imanum/drn049

    Article  MathSciNet  MATH  Google Scholar 

  10. Dedner, A., Madhavan, P.: Adaptive discontinuous Galerkin methods on surfaces. Numer. Math. 132(2), 369–398 (2016). https://doi.org/10.1007/s00211-015-0719-4

    Article  MathSciNet  MATH  Google Scholar 

  11. Dedner, A., Madhavan, P., Stinner, B.: Analysis of the discontinuous Galerkin method for elliptic problems on surfaces. IMA J. Numer. Anal. 33(3), 952–973 (2013). https://doi.org/10.1093/imanum/drs033

    Article  MathSciNet  MATH  Google Scholar 

  12. Demlow, A.: Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces. SIAM J. Numer. Anal. 47(2), 805–827 (2009). https://doi.org/10.1137/070708135

    Article  MathSciNet  MATH  Google Scholar 

  13. Demlow, A., Dziuk, G.: An adaptive finite element method for the Laplace–Beltrami operator on implicitly defined surfaces. SIAM J. Numer. Anal. 45(1), 421–442 (2007). https://doi.org/10.1137/050642873

    Article  MathSciNet  MATH  Google Scholar 

  14. Demlow, A., Olshanskii, M.A.: An adaptive surface finite element method based on volume meshes. SIAM J. Numer. Anal. 50(3), 1624–1647 (2012). https://doi.org/10.1137/110842235

    Article  MathSciNet  MATH  Google Scholar 

  15. do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976). Translated from the Portuguese

  16. Dziuk, G.: Finite elements for the Beltrami operator on arbitrary surfaces. In: Partial Differential Equations and Calculus of Variations. Lecture Notes in Mathematics, vol. 1357, pp. 142–155. Springer, Berlin (1988). https://doi.org/10.1007/BFb0082865

    Google Scholar 

  17. Dziuk, G., Elliott, C.M.: Finite element methods for surface PDEs. Acta Numer. 22, 289–396 (2013)

    Article  MathSciNet  Google Scholar 

  18. Efendiev, Y., Galvis, J., Sebastian Pauletti, M.: Multiscale finite element methods for flows on rough surfaces. Commun. Comput. Phys. 14(4), 979–1000 (2013)

    Article  MathSciNet  Google Scholar 

  19. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements, Applied Mathematical Sciences, vol. 159. Springer, New York (2004)

    Book  Google Scholar 

  20. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224. Springer, Berlin (1983)

    Book  Google Scholar 

  21. Hansbo, P., Larson, M.G.: A Stabilized Finite Element Method for the Darcy Problem on Surfaces (2015). arXiv:1511.03747

  22. Hansbo, P., Larson, M.G., Zahedi, S.: Stabilized finite element approximation of the mean curvature vector on closed surfaces. SIAM J. Numer. Anal. 53(4), 1806–1832 (2015). https://doi.org/10.1137/140982696

    Article  MathSciNet  MATH  Google Scholar 

  23. Holst, M., Stern, A.: Geometric variational crimes: Hilbert complexes, finite element exterior calculus, and problems on hypersurfaces. Found. Comput. Math. 12(3), 263–293 (2012). https://doi.org/10.1007/s10208-012-9119-7

    Article  MathSciNet  MATH  Google Scholar 

  24. Lang, S.: Undergraduate Analysis, Undergraduate Texts in Mathematics, 2nd edn. Springer, New York (1997)

    Google Scholar 

  25. Mantegazza, C., Mennucci, A.C.: Hamilton–Jacobi equations and distance functions on Riemannian manifolds. Appl. Math. Optim. 47(1), 1–25 (2003). https://doi.org/10.1007/s00245-002-0736-4

    Article  MathSciNet  MATH  Google Scholar 

  26. Olshanskii, M.A., Reusken, A., Grande, J.: A finite element method for elliptic equations on surfaces. SIAM J. Numer. Anal. 47(5), 3339–3358 (2009). https://doi.org/10.1137/080717602

    Article  MathSciNet  MATH  Google Scholar 

  27. Olshanskii, M.A., Reusken, A.: A finite element method for surface PDEs: matrix properties. Numer. Math. 114(3), 491–520 (2010). https://doi.org/10.1007/s00211-009-0260-4

    Article  MathSciNet  MATH  Google Scholar 

  28. Olshanskii, M.A., Reusken, A., Xu, X.: An Eulerian space–time finite element method for diffusion problems on evolving surfaces. SIAM J. Numer. Anal. 52(3), 1354–1377 (2014). https://doi.org/10.1137/130918149

    Article  MathSciNet  MATH  Google Scholar 

  29. Olshanskii, M.A., Reusken, A., Xu, X.: A stabilized finite element method for advection–diffusion equations on surfaces. IMA J. Numer. Anal. 34(2), 732–758 (2014). https://doi.org/10.1093/imanum/drt016

    Article  MathSciNet  MATH  Google Scholar 

  30. Olshanskii, M.A., Safin, D.: A narrow-band unfitted finite element method for elliptic PDEs posed on surfaces. Math. Comput. 85(300), 1549–1570 (2016). https://doi.org/10.1090/mcom/3030

    Article  MathSciNet  MATH  Google Scholar 

  31. Schatz, A.H., Wahlbin, L.B.: Maximum norm estimates in the finite element method on plane polygonal domains. I. Math. Comput. 32(141), 73–109 (1978)

    MathSciNet  MATH  Google Scholar 

  32. Schatz, A.H., Wahlbin, L.B.: Maximum norm estimates in the finite element method on plane polygonal domains. II. Refinements. Math. Comput. 33(146), 465–492 (1979)

    MathSciNet  MATH  Google Scholar 

  33. Walker, S.W.: The Shapes of Things, Advances in Design and Control. A Practical Guide to Differential Geometry and the Shape Derivative, vol. 28. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2015)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnny Guzman.

Additional information

Johnny Guzman and Marcus Sarkis are supported by National Science Foundation (Grant Nos. DMS #1620100 and NSF-MPS 1522663).

Appendix A: One Technical Result

Appendix A: One Technical Result

Lemma 19

Assume that \(\Gamma \) is a \(C^3\) two-dimensional compact orientable surface without boundary, and that \(u\in H^2(\Gamma )\). Then

$$\begin{aligned}&\sum _{i,j=1}^3\int _{\Gamma _2}\underline{D}_{ij}u\underline{D}_i\left( \rho ^2\underline{D}_ju\right) \,dA \\&\quad =\sum _{j=1}^3\int _{\Gamma _2}\Delta _\Gamma u\underline{D}_j\left( \rho ^2\underline{D}_ju\right) \,dA -\int _{\Gamma _2}\rho ^2\bigl ({\text {tr}}(H)H-2H^2\bigr ){\varvec{\nabla }_\Gamma }u\cdot {\varvec{\nabla }_\Gamma }u\,dA. \end{aligned}$$

Proof

In what follows, we use the two identities [17]

$$\begin{aligned} \int _\Gamma \underline{D}_iuv\,dA=-\int _\Gamma u\underline{D}_iv\,dA+\int _\Gamma uv{\text {tr}}(H)\nu _i\,dA, \end{aligned}$$
(52)

and

$$\begin{aligned} \underline{D}_{ij}u=\underline{D}_{ji}u+(H{\varvec{\nabla }_\Gamma }u)_j\nu _i-(H{\varvec{\nabla }_\Gamma }u)_i\nu _j, \end{aligned}$$
(53)

for all \(C^3(\Gamma )\) functions u, v. Also we will use that of course

$$\begin{aligned} {\varvec{\nabla }_\Gamma }u\cdot {\varvec{\nu }}=0. \end{aligned}$$
(54)

We assume for the proof that \(u\in C^3(\Gamma )\), and the general result follows from density arguments. Following [17, Lemma 3.2], and using the Einstein summation convention,

$$\begin{aligned}&\int _\Gamma \underline{D}_{ij}u\underline{D}_i\left( \rho ^2\underline{D}_ju\right) \,dA \\&\quad =-\int _\Gamma \underline{D}_{iij}u\left( \rho ^2\underline{D}_ju\right) \,dA +\int _\Gamma \underline{D}_{ij}u\rho ^2\underline{D}_ju{\text {tr}}(H)\nu _i\,dA&\text { by } (52) \\&\quad =-\int _\Gamma \underline{D}_{iij}u \left( \rho ^2\underline{D}_ju\right) \,dA\quad&\text { by } (55) \\&\quad =-\int _\Gamma \underline{D}_i\bigl [\underline{D}_{ji}u+(H{\varvec{\nabla }_\Gamma }u)_j\nu _i-(H{\varvec{\nabla }_\Gamma }u)_i\nu _j\bigr ]\rho ^2\underline{D}_ju\,dA \quad&\text { by } (53) \\&\quad =-\int _\Gamma \underline{D}_i\bigl [\underline{D}_{ji}u+H_{jk}\underline{D}_ku\nu _i-H_{ik}\underline{D}_ku\nu _j\bigr ]\rho ^2\underline{D}_ju\,dA \\&\quad =-\int _\Gamma \bigl (\underline{D}_{iji}u+H_{jk}H_{ii}\underline{D}_ku-H_{ik}H_{ij}\underline{D}_ku\bigr )\rho ^2\underline{D}_ju\,dA&\text { by } (54) \\&\quad =-\int _\Gamma \left( \underline{D}_{iji}u \rho ^2\underline{D}_ju + \rho ^2({\text {tr}}(H) H- H^2) {\varvec{\nabla }_\Gamma }u \cdot {\varvec{\nabla }_\Gamma }u \right) \,dA. \end{aligned}$$

To handle the first term on the right hand side, we use (53) and the fact that \(\underline{D}_{ii} u= \Delta _{\Gamma } u\) to write:

$$\begin{aligned} -\int _\Gamma \underline{D}_{iji}u\rho ^2\underline{D}_ju\,dA&=-\int _\Gamma \bigl [\underline{D}_j\Delta _\Gamma u+(H{\varvec{\nabla }_\Gamma }\underline{D}_iu)_j\nu _i-(H{\varvec{\nabla }_\Gamma }\underline{D}_iu)_i\nu _j\bigr ]\rho ^2\underline{D}_ju\,dA \\&=-\int _\Gamma \underline{D}_j\Delta _\Gamma u\rho ^2\underline{D}_ju+H_{jk}\underline{D}_{ki}u\nu _i\rho ^2\underline{D}_ju\,dA, \end{aligned}$$

where we used (54) in the last equation. But \(\underline{D}_{ki}u\nu _i=\underline{D}_k(\underline{D}_iu\nu _i)-\underline{D}_iuH_{ki}=-\underline{D}_iuH_{ki}\), and then

$$\begin{aligned} -\int _\Gamma \underline{D}_{iji} u\rho ^2 \underline{D}_ju\,dA&=\int _\Gamma -\underline{D}_j\Delta _\Gamma u\rho ^2\underline{D}_ju+H_{jk}\underline{D}_iuH_{ki}\rho ^2\underline{D}_ju\,dA \\&=\int _\Gamma \Delta _\Gamma u\underline{D}_j\left( \rho ^2\underline{D}_ju\right) +\rho ^2H^2{\varvec{\nabla }_\Gamma }u\cdot {\varvec{\nabla }_\Gamma }u\,dA. \end{aligned}$$

In the last equation we used (52) and (54). This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzman, J., Madureira, A., Sarkis, M. et al. Analysis of the Finite Element Method for the Laplace–Beltrami Equation on Surfaces with Regions of High Curvature Using Graded Meshes. J Sci Comput 77, 1736–1761 (2018). https://doi.org/10.1007/s10915-017-0580-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0580-y

Keywords

Navigation