Skip to main content
Log in

Superconvergence of Immersed Finite Volume Methods for One-Dimensional Interface Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

An Author Correction to this article was published on 05 December 2017

This article has been updated

Abstract

In this paper, we introduce a class of high order immersed finite volume methods (IFVM) for one-dimensional interface problems. We show the optimal convergence of IFVM in \(H^1\)- and \(L^2\)-norms. We also prove some superconvergence results of IFVM. To be more precise, the IFVM solution is superconvergent of order \(p+2\) at the roots of generalized Lobatto polynomials, and the flux is superconvergent of order \(p+1\) at generalized Gauss points on each element including the interface element. Furthermore, for diffusion interface problems, the convergence rates for IFVM solution at the mesh points and the flux at generalized Gauss points can both be raised to 2p. These superconvergence results are consistent with those for the standard finite volume methods. Numerical examples are provided to confirm our theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 05 December 2017

    The original version of this article unfortunately contained an error.

References

  1. Adjerid, S., Lin, T.: Higher-order immersed discontinuous Galerkin methods. Int. J. Inf. Syst. Sci 3(4), 555–568 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Adjerid, S., Lin, T.: A p-th degree immersed finite element for boundary value problems with discontinuous coefficients. Appl. Numer. Math. 59(6), 1303–1321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adjerid, S., Massey, T.C.: Superconvergence of discontinuous Galerkin solutions for a nonlinear scalar hyperbolic problem. Comput. Methods Appl. Mech. Eng. 195, 3331–3346 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Babu\(\check{s}\)ka, I., Strouboulis, T., Upadhyay, C.S., Gangaraj, S.K.: Computer-based proof of the existence of superconvergence points in the finite element method: superconvergence of the derivatives in finite element solutions of Laplace’s, Poisson’s, and the elasticity equations. Numer. Methods PDEs 12, 347–392 (1996)

  5. Babu\(\check{s}\)ka, I., Aziz, A. K.: Survey lectures on the mathematical foundations of the finite element method. In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (Proceedings of Symposium, Univ. Maryland, Baltimore, MD) (1972)

  6. Bank, R.E., Rose, D.J.: Some error estimates for the box scheme. SIAM J. Numer. Anal 24, 777–787 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barth, T., Ohlberger, M.: Finite volume methods: foundation and analysis. In: Stein, E., De Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of computational Mechanics, , vol. 1, chap. 15. Wiley, New York (2004)

  8. Bramble, J., Schatz, A.: High order local accuracy by averaging in the finite element method. Math. Comput. 31, 94–111 (1997)

    Article  MATH  Google Scholar 

  9. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15. Springer, New York (1994)

    MATH  Google Scholar 

  10. Cai, Z.: On the finite volume element method. Numer. Math. 58, 713–735 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cai, Z., Douglas, J., Park, M.: Development and analysis of higher order finite volume methods over rectangles for elliptic equations. Adv. Comput. Math 19, 3–33 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cao, W., Zhang, X., Zhang, Z.: Superconvergence of immersed finite element methods for interface problems. Adv. Comput. Math 43, 795–821 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cao, W., Zhang, Z., Zou, Q.: Superconvergence of any order finite volume schemes for 1D general elliptic equations. J. Sci. Comput. 56, 566–590 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cao, W., Shu, C.-W., Yang, Y., Zhang, Z.: Superconvergence of discontinuous Galerkin methods for 2-D hyperbolic equations. SIAM. J. Numer. Anal 53, 1651–1671 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cao, W., Zhang, Z.: Superconvergence of local discontinuous Galerkin method for one-dimensional linear parabolic equations. Math. Comput. 85, 63–84 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cao, W., Zhang, Z., Zou, Q.: Superconvergence of discontinuous Galerkin method for linear hyperbolic equations. SIAM J. Numer. Anal 52, 2555–2573 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cao, W., Zhang, Z., Zou, Q.: Is 2k-conjecture valid for finite volume methods? SIAM J. Numer. Anal 53(2), 942–962 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, C., Hu, S.: The highest order superconvergence for bi-k degree rectangular elements at nodes—a proof of 2k-conjecture. Math. Comput. 82, 1337–1355 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, Z., Wu, J., Xu, Y.: Higher-order finite volume methods for elliptic boundary value problems. Adv. Comput. Math. 37, 191–253 (2012)

  20. Chen, Z., Zou, J.: Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79(2), 175–202 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chou, S., Ye, X.: Superconvergence of finite volume methods for the second order elliptic problem. Comput. Methods Appl. Mech. Eng. 196, 3706–3712 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration. Computer Science and Applied Mathematics, 2nd edn. Academic Press, Orlando (1984)

    Google Scholar 

  23. Ewing, R.E., Li, Z., Lin, T., Lin, Y.: The immersed finite volume element methods for the elliptic interface problems. Math. Comput. Simul. 50(1–4), 63–76 (1999). Modelling ’98 (Prague)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ewing, R., Lin, T., Lin, Y.: On the accuracy of the finite volume element based on piecewise linear polynomials. SIAM J. Numer. Anal 39, 1865–1888 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Eymard, R., Gallouet, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. VII, pp. 713–1020. North-Holland, Amsterdam (2000)

    Google Scholar 

  26. Guo, W., Zhong, X., Qiu, J.: Superconvergence of discontinuous Galerkin and local discontinuous Galerkin methods: eigen-structure analysis based on Fourier approach. J. Comput. Phys. 235, 458–485 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. He, X., Lin, T., Lin, Y.: Approximation capability of a bilinear immersed finite element space. Numer. Methods Partial Differ. Equ. 24(5), 1265–1300 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. He, X., Lin, T., Lin, Y.: A bilinear immersed finite volume element method for the diffusion equation with discontinuous coefficient. Commun. Comput. Phys. 6(1), 185–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. He, X., Lin, T., Lin, Y.: Interior penalty bilinear IFE discontinuous Galerkin methods for elliptic equations with discontinuous coefficient. J. Syst. Sci. Complex. 23(3), 467–483 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kwak, D.Y., Wee, K.T., Chang, K.S.: An analysis of a broken \(P_1\)-nonconforming finite element method for interface problems. SIAM J. Numer. Anal. 48(6), 2117–2134 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, Z.: The immersed interface method using a finite element formulation. Appl. Numer. Math. 27(3), 253–267 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, Z., Lin, T., Wu, X.: New Cartesian grid methods for interface problems using the finite element formulation. Numer. Math. 96(1), 61–98 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lin, T., Lin, Y., Zhang, X.: Partially penalized immersed finite element methods for elliptic interface problems. SIAM J. Numer. Anal. 53(2), 1121–1144 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lin, T., Sheen, D., Zhang, X.: A locking-free immersed finite element method for planar elasticity interface problems. J. Comput. Phys. 247, 228–247 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lin, T., Sheen, D., Zhang, X.: Nonconforming immersed finite element methods for elliptic interface problems. SIAM J. Numer. Anal. (2015). arXiv:1510.00052

  36. Lin, T., Yang, Q., Zhang, X.: A priori error estimates for some discontinuous Galerkin immersed finite element methods. J. Sci. Comput. 65(3), 875–894 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. K\(\breve{r}\)i\(\breve{z}\)ek, M., Neittaanm\(\ddot{a}\)ki, P.: On superconvergence techniques. Acta Appl. Math. 9, 175–198 (1987)

  38. Li, R., Chen, Z., Wu, W.: The Generalized Difference Methods for Partial Differential Equations. Marcel Dikker, New York (2000)

    Google Scholar 

  39. Ollivier-Gooch, C., Altena, M.: A high-order-accurate unconstructed mesh finite-volume scheme for the advection–diffusion equation. J. Comput. Phys. 181, 729–752 (2002)

    Article  MATH  Google Scholar 

  40. Plexousakis, M., Zouraris, G.: On the construction and analysis of high order locally conservative finite volume type methods for one dimensional elliptic problems. SIAM J. Numer. Anal. 42, 1226–1260 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Süli, E.: Convergence of finite volume schemes for Poisson’s equation on nonuniform meshes. SIAM J. Numer. Anal. 28, 1419–1430 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  42. Thomee, V.: High order local approximation to derivatives in the finite element method. Math. Comput. 31, 652–660 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  43. Xu, J.: Estimate of the convergence rate of the finite element solutions to elliptic equation of second order with discontinuous coefficients. Nat. Sci. J. Xiangtan Univ. 1, 1–5 (1982)

    Google Scholar 

  44. Xie, Z., Zhang, Z.: Uniform superconvergence analysis of the discontinuous Galerkin method for a singularly perturbed problem in 1-D. Math. Comput. 79, 35–45 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wahlbin, L.B.: Superconvergence in Galerkin finite element methods. Lecture Notes in Mathematics, vol. 1605. Springer, Berlin (1995)

  46. Xu, J., Zikatanov, L.: Some observations on Babuska and Brezzi theories. Numer. Math. 94(1), 195–202 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  47. Xu, J., Zou, Q.: Analysis of linear and quadratic simplitical finite volume methods for elliptic equations. Numer. Math. 111, 469–492 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yang, Y., Shu, C.-W.: Analysis of optimal superconvergence of discontinuous Galerkin method for linear hyperbolic equations. SIAM J. Numer. Anal 50, 3110–3133 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yang, Q., Zhang, X.: Discontinuous Galerkin immersed finite element methods for parabolic interface problems. J. Comput. Appl. Math. 299, 127–139 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhang, Z., Zou, Q.: Vertex-centered finite volume schemes of any order over quadrilateral meshes for elliptic boundary value problems. Numer. Math. 130, 363–393 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Zhang.

Additional information

The work of W. Cao was supported in part by the NSFC Grant 11501026, and the China Postdoctoral Science Foundation Grants 2016T90027, 2015M570026. The work of Z. Zhang was supported in part by the NSFC Grants 11471031, 91430216, and U1530401; and NSF Grant DMS-1419040. The work of Q. Zou was supported in part by the following Grants: the special project High performance computing of National Key Research and Development Program 2016YFB0200604, the NSFC 11571384, the Guangdong Provincial NSF 2014A030313179, and the Fundamental Research Funds for the Central Universities 16lgjc80.

A correction to this article is available online at https://doi.org/10.1007/s10915-017-0609-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, W., Zhang, X., Zhang, Z. et al. Superconvergence of Immersed Finite Volume Methods for One-Dimensional Interface Problems. J Sci Comput 73, 543–565 (2017). https://doi.org/10.1007/s10915-017-0532-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0532-6

Keywords

Navigation