Skip to main content
Log in

Superconvergence of Any Order Finite Volume Schemes for 1D General Elliptic Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present and analyze a finite volume scheme of arbitrary order for elliptic equations in the one-dimensional setting. In this scheme, the control volumes are constructed by using the Gauss points in subintervals of the underlying mesh. We provide a unified proof for the inf-sup condition, and show that our finite volume scheme has optimal convergence rate under the energy and \(L^2\) norms of the approximate error. Furthermore, we prove that the derivative error is superconvergent at all Gauss points and in some special cases, the convergence rate can reach \(h^{r+2}\) and even \(h^{2r}\), comparing with \(h^{r+1}\) rate of the counterpart finite element method. Here \(r\) is the polynomial degree of the trial space. All theoretical results are justified by numerical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.F.: Sobolev spaces, 2nd edn. Academic Press, Singapore (1981)

    Google Scholar 

  2. Babuška, I., Aziz, A.K.: Survey lectures on the mathematical foundations of the finite element method. Techinical Note BN-748, University of Maryland, College Park, Washington DC (1972)

  3. Babuška, I., Strouboulis, T.: The Finite Element Method and Its Reliability. Numerical Mathematics and Scientific Computation. Oxford Science Publications, New York (2001)

    Google Scholar 

  4. Bank, R.E., Rose, D.J.: Some error estimates for the box scheme. SIAM J. Numer. Anal. 24, 777–787 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barth, T., Ohlberger, M.: Finite volume methods: foundation and analysis. In: Stein, E., De Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, vol. 1, chapt. 15. Wiley, New York (2004)

    Google Scholar 

  6. Cai, Z.: On the finite volume element method. Numer. Math. 58, 713–735 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cai, Z., Douglas, J., Park, M.: Development and analysis of higher order finite volume methods over rectangles for elliptic equations. Adv. Comput. Math. 19, 3–33 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Celiker, F., Cockburn, B.: Superconvergence of the numerical traces of discontinuous Galerkin and hybridized methods for convection–diffusion problems in one space dimension. Math. Comp. 76, 67–96 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, C.: Structure Theorey of Superconvergence of Finite Elements (in Chinese). Hunan Science and Technology Press, Hunan (2001)

    Google Scholar 

  10. Chen, L.: A new class of high order finite volume methods for second order elliptic equations. SIAM J. Numer. Anal. 47, 4021–4043 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, Z., Wu, J., Xu, Y.: Higher-order finite volume methods for elliptic boundary value problems. Adv. Comput. Math. 37, 191–253 (2012)

    Google Scholar 

  12. Chou, S.-H., Kwak, D.Y., Li, Q.: \(L^p\) error estimates and superconvergence for covolume or finite volume element methods. Numer. Methods Partial Differ. Equ. 19, 463–486 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chou, S.-H., Ye, X.: Superconvergence of finite volume methods for the second order elliptic problem. Comput. Methods Appl. Mech. Eng. 196, 3706–3712 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, Boston (1984)

    MATH  Google Scholar 

  15. Douglas Jr, J., Dupont, T.: Galerkin approximations for the two point boundary problem using continuous, piecewise polynomial spaces. Numer. Math. 22, 99–109 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Emonot, Ph: Methods de volums elements finis : applications aux equations de navier-stokes et resultats de convergence. Dissertation, Lyon (1992)

  17. Ewing, R., Lin, T., Lin, Y.: On the accuracy of the finite volume element based on piecewise linear polynomials. SIAM J. Numer. Anal. 39, 1865–1888 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Eymard, R., Gallouet, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, VII, pp. 713–1020. North-Holland, Amsterdam (2000)

    Google Scholar 

  19. Li, R., Chen, Z., Wu, W.: The Generalized Difference Methods for Partial differential Equations. Marcel Dikker, New York (2000)

    Google Scholar 

  20. Liebau, F.: The finite volume element method with quadratic basis function. Computing 57, 281–299 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ollivier-Gooch, C., Altena, M.: A high-order-accurate unconstructed mesh finite-volume scheme for the advection-diffusion equation. J. Comput. Phys. 181, 729–752 (2002)

    Article  MATH  Google Scholar 

  22. Plexousakis, M., Zouraris, G.: On the construction and analysis of high order locally conservative finite volume type methods for one dimensional elliptic problems. SIAM J. Numer. Anal. 42, 1226–1260 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Süli, E.: Convergence of finite volume schemes for Poisson’s equation on nonuniform meshes. SIAM J. Numer. Anal. 28, 1419–1430 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Süli, E.: The accuracy of cell vertex finite volume methods on quadrilateral meshes. Math. Comp. 59, 359–382 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tian, M., Chen, Z.: Quadratical element generalized differential methods for elliptic equations. Numer. Math. J. Chinese Univ. 13, 99–113 (1991)

    MathSciNet  MATH  Google Scholar 

  26. Wahlbin, L.R.: Superconvergence In Galerkin Finite Element Methods. Lecture Notes in Mathematics, vol. 1605. Springer, Berlin (1995)

    Google Scholar 

  27. Xu, J., Zikatanov, L.: Some observations on Babuska–Brezzi conditions. Numer. Math. 94, 195–202 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xu, J., Zou, Q.: Analysis of linear and quadratic simplitical finite volume methods for elliptic equations. Numer. Math. 111, 469–492 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, Z., Zou, Q.: Finite volume methods of any order on rectangular meshes (2012, submitted)

  30. Zhang, Z., Zou, Q.: Finite volume methods of any order over quadrilateral meshes (2012, submitted)

  31. Zhang, Z.: Finite element superconvergent approximation for one-dimensional singularly perturbed problems. Numer. Methods Partial Differ. Equ. 18, 374–395 (2002)

    Article  MATH  Google Scholar 

  32. Zhang, Z.: Superconvergence of spectral collocation and p-version methods in one dimensional problems. Math. Comp. 74, 1621–1636 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhu, Q., Lin, Q.: Superconvergence Theory of the Finite Element Method (in Chinese). Hunan Science Press, Hunan (1989)

    Google Scholar 

  34. Zienkiewicz, O., Taylor, R., Zhu, J.Z.: The Finite Element Method, 6th edn. McGraw-Hill, London (2005)

    MATH  Google Scholar 

  35. Zou, Q.: Hierarchical error estimates for finite volume approximation solution of elliptic equations. Appl. Numer. Math. 60, 142–153 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Zhimin Zhang is partially supported by the US National Science Foundation through grant DMS-111530, the Ministry of Education of China through the Changjiang Scholars program, and Guangdong Provincial Government of China through the “Computational Science Innovative Research Team” program. Qingsong Zou is supported in part by the National Natural Science Foundation of China under the grant 11171359 and in part by the Fundamental Research Funds for the Central Universities of China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsong Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, W., Zhang, Z. & Zou, Q. Superconvergence of Any Order Finite Volume Schemes for 1D General Elliptic Equations. J Sci Comput 56, 566–590 (2013). https://doi.org/10.1007/s10915-013-9691-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9691-2

Keywords

Navigation