Skip to main content

Efficient and High-Order Explicit Local Time Stepping on Moving DG Spectral Element Meshes

  • Conference paper
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 106))

  • 1319 Accesses

Abstract

We outline and extend results for an explicit local time stepping (LTS) strategy designed to operate with the discontinuous Galerkin spectral element method (DGSEM). The LTS procedure is derived from Adams-Bashforth multirate time integration methods. The new results of the LTS method focus on parallelization and reformulation of the LTS integrator to maintain conservation. Discussion is focused on a moving mesh implementation, but the procedures remain applicable to static meshes. In numerical tests, we demonstrate the strong scaling of a parallel, LTS implementation and compare the scaling properties to a parallel, global time stepping (GTS) Runge-Kutta implementation. We also present time-step refinement studies to show that the redesigned, conservative LTS approximations are spectrally accurate in space and have design temporal accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.A. Acosta Minoli, D.A. Kopriva, Discontinuous Galerkin spectral element approximations on moving meshes. J. Comput. Phys. 230, 1876–1902 (2010)

    Article  MathSciNet  Google Scholar 

  2. C. Altmann, A.D. Beck, F. Hindenlang, M. Staudenmaier, G.J. Gassner, C.-D. Munz, An efficient high performance parallelization of a discontinuous Galerkin spectral element method, in Facing the Multicore-Challenge III (Springer, Heidelberg, 2013), pp. 37–47

    Google Scholar 

  3. A. Baggag, H. Atkins, D. Keyes, Parallel implementation of the discontinuous Galerkin method, in Parallel Computational Fluid Dynamics: Towards Teraflops, Optimization, and Novel Formulations (North-Holland, Amsterdam, 2000), pp. 115–122

    Google Scholar 

  4. S. Étienne, A. Garon, D. Pelletier, Perspective on the geometric conservation law and finite element methods for ALE simulations of incompressible flow. J. Comput. Phys. 228, 2313–2333 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. N. Gödel, S. Schomann, T. Warburton, M. Clemens, Local timestepping discontinuous Galerkin methods for electromagnetic RF field problems, in 3rd European Conference on Antennas and Propagation, 2009. EuCAP 2009 (IEEE, Berlin, 2009), pp. 2149–2153

    Google Scholar 

  6. G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20, 359–392 (1998)

    Article  MathSciNet  Google Scholar 

  7. J.F. Kelly, F.X. Giraldo, Continuous and discontinuous Galerkin methods for a scalable three-dimensional nonhydrostatic atmospheric model: limited-area mode. J. Comput. Phys. 231, 7988–8008 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. D.A. Kopriva, Metric identities and the discontinuous spectral element method on curvilinear meshes. J. Sci. Comput. 26, 301–327 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. D.A. Kopriva, Implementing Spectral Methods for Partial Differential Equations (Springer, Heidelberg, 2009)

    Book  MATH  Google Scholar 

  10. I. Lomtev, R.M. Kirby, G.E. Karniadakis, A discontinuous Galerkin ALE method for compressible viscous flows in moving domains. J. Comput. Phys. 155, 128–159 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. D.J. Mavriplis, Z. Yang, Construction of the discrete geometric conservation law for high-order time-accurate simulations on dynamic meshes. J. Comput. Phys. 213, 557–573 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Tirupathi, J.S. Hesthaven, Y. Liang, M. Parmentier, Multilevel and local time-stepping discontinuous Galerkin methods for magma dynamics. Comput. Geosci. 19(4), 965–978 (2015)

    Article  MathSciNet  Google Scholar 

  13. A.R. Winters, D.A. Kopriva, High-order local time stepping on moving DG spectral element meshes. J. Sci. Comput. 58, 176–202 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Winters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Winters, A.R., Kopriva, D.A. (2015). Efficient and High-Order Explicit Local Time Stepping on Moving DG Spectral Element Meshes. In: Kirby, R., Berzins, M., Hesthaven, J. (eds) Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014. Lecture Notes in Computational Science and Engineering, vol 106. Springer, Cham. https://doi.org/10.1007/978-3-319-19800-2_48

Download citation

Publish with us

Policies and ethics