Skip to main content
Log in

An ADI Crank–Nicolson Orthogonal Spline Collocation Method for the Two-Dimensional Fractional Diffusion-Wave Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A new method is formulated and analyzed for the approximate solution of a two-dimensional time-fractional diffusion-wave equation. In this method, orthogonal spline collocation is used for the spatial discretization and, for the time-stepping, a novel alternating direction implicit method based on the Crank–Nicolson method combined with the \(L1\)-approximation of the time Caputo derivative of order \(\alpha \in (1,2)\). It is proved that this scheme is stable, and of optimal accuracy in various norms. Numerical experiments demonstrate the predicted global convergence rates and also superconvergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baleanum, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus. Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos, 3. World Scientific, New Jersey (2012)

    Google Scholar 

  2. Bialecki, B.: Convergence analysis of the orthogonal spline collocation for elliptic boundary value problems. SIAM J. Numer. Anal. 35, 617–631 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bialecki, B., Fairweather, G.: Orthogonal spline collocation methods for partial differential equations. J. Comput. Appl. Math. 128, 55–82 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bialecki, B., Fernandes, R.I.: An alternating-direction implicit orthogonal spline collocation scheme for nonlinear parabolic problems on rectangular polygons. SIAM J. Sci. Comput. 58, 1054–1077 (2006)

    Article  MathSciNet  Google Scholar 

  5. Caputo, M.: Linear models of dissipation whose \(Q\) is almost frequency independent. II. Reprinted from Geophys. J. R. Astr. Soc. 13 (1967), pp. 529–539. Fract. Calc. Appl. Anal. 11, 4–14 (2008)

  6. Chan, S., Liu, F.: ADI-Euler and extrapolation methods for the two-dimensional advection–dispersion equation. J. Appl. Math. Comput. 26, 295–311 (2008)

    Article  MathSciNet  Google Scholar 

  7. Cui, M.R.: Compact alternating direction implicit method for the two-dimensional time fractional diffusion equation. J. Comput. Phys. 231, 2621–2633 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cui, M.R.: Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation. Numer. Algor. 62, 383–409 (2013)

    Article  MATH  Google Scholar 

  9. Fairweather, G.: Finite Element Galerkin Methods for Differential Equations, Lecture Notes in Pure and Applied Mathematics, vol. 34. Marcel Dekker, New York (1978)

    Google Scholar 

  10. Fairweather, G., Gladwell, I.: Algorithms for almost block diagonal linear systems. SIAM Rev. 46, 49–58 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fairweather, G., Yang, X., Xu, D., Zhang, H.: An ADI Crank–Nicolson orthogonal spline collocation method for the two-dimensional fractional diffusion-wave equation. Available from: arXiv:1405.3264

  12. Fernandes, R.I., Bialecki, B., Fairweather, G.: Alternating direction implicit orthogonal spline collocation methods for evolution equations. In: Jacob, M.J., Panda, S. (eds.) Mathematical Modelling and Applications to Industrial Problems (MMIP-2011), pp. 3–11. Macmillan Publishers India Limited, Chennai (2012)

    Google Scholar 

  13. Fernandes, R.I., Fairweather, G.: Analysis of alternating direction collocation methods for parabolic and hyperbolic problems in two space variables. Numer. Methods Partial Differ. Equ. 9, 191–211 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fernandes, R.I., Fairweather, G.: An ADI extrapolated Crank–Nicolson orthogonal spline collocation method for nonlinear reaction-diffusion systems. J. Comput. Phys. 231, 6248–6267 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jin, B., Lazarov, R., Zhiu, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51, 445–466 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Liu, Q., Liu, F., Turner, I., Anh, V.: Numerical simulation for the 3D seepage flow with fractional derivatives in porous media. IMA J. Appl. Math. 74, 201–229 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Meerschaert, M.M., Scheffler, H.P., Tadjeran, C.: Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 211, 249–261 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mustapha, K., McLean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51, 491–515 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Oldham, K., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Mathematics in Science and Engineering, vol. 111. Academic Press, New York (1974)

    Google Scholar 

  21. Pani, A., Fairweather, G., Fernandes, R.I.: ADI orthogonal spline collocation methods for parabolic partial integro-differential equations. IMA J. Numer. Anal. 30, 248–276 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Peaceman, D.W., Rachford Jr, H.H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Indust. Appl. Math. 3, 28–41 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ren, J., Sun, Z.Z.: Numerical algorithm with high spatial accuracy for the fractional diffusion-wave equation with Neumann boundary conditions. J. Sci. Comput. (2013). doi:10.1007/s10915-012-9681-9

  24. Tadjeran, C., Meerschaert, M.M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220, 813–823 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Uchaikin, V.V.: Fractional Derivatives for Physicists and Engineers Vol. I, Background and Theory. Higher Education Press, Springer, Beijing, Heidelberg (2013)

    Book  Google Scholar 

  26. Uchaikin, V.V.: Fractional Derivatives for Physicists and Engineers Vol. II, Applications. Higher Education Press, Springer, Beijing, Heidelberg (2013)

    Book  Google Scholar 

  27. Wang, H., Wang, K.: An \(O(Nlog^2N)\) alternating-direction finite difference method for two-dimensional fractional diffusion equations. J. Comput. Phys. 230, 7830–7839 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Yu, Q., Liu, F., Turner, I., Burrage, K.: A computationally effective alternating direction method for the space and time fractional Bloch–Torrey equation in 3-D. Appl. Math. Comput. 219, 4082–4095 (2012)

    Article  MathSciNet  Google Scholar 

  29. Zhang, Y.N., Sun, Z.Z.: Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 230, 8713–8728 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Zhang, Y.N., Sun, Z.Z., Zhao, X.: Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation. SIAM J. Numer. Anal. 50, 1535–1555 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the referees for their constructive criticisms and helpful suggestions. This project was funded in part by the National Nature Science Foundation of China (contract Grant 11271123) and the Research and Innovation Project for College Graduates of Hunan Province (contract Grant CX2012B196).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme Fairweather.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fairweather, G., Yang, X., Xu, D. et al. An ADI Crank–Nicolson Orthogonal Spline Collocation Method for the Two-Dimensional Fractional Diffusion-Wave Equation. J Sci Comput 65, 1217–1239 (2015). https://doi.org/10.1007/s10915-015-0003-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0003-x

Keywords

AMS Subject Classifications

Navigation