Skip to main content
Log in

A Frequency-Domain Approach for the \(\hbox {P}_1\) Approximation of Time-Dependent Radiative Transfer

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a new frequency-domain method to solve the simplified \(\text {P}_1\) approximation of time-dependent radiative transfer equations. The method employs the Fourier transform and consists of two stages. In the first stage the equations are transformed into an elliptic problem for the frequency variables. The numerical solutions of this problem are approximated using a Galerkin projection method based on the tensor-product B-spline interpolants. In the second stage a Gauss–Hermite quadrature procedure is proposed for the computation of the inverse Fourier transform to recover the numerical solutions of the original simplified \(\text {P}_1\) problem. The method avoids the discretization of the time variable in the considered system and it accurately resolves all time scales in radiative transfer regimes. Several test examples are used to verify high accuracy, effectiveness and good resolution properties for smooth and discontinuous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abramowitz, M., Setgun, I.A. (eds.): Handbook of mathematical functions with formulas, graphs, and mathematical tables, 9th printing. Dover, New York (1972)

  2. Addam, M.: Approximation du problème de diffusion en tomographie optique et problème inverse. Ph.D. thesis, LMPA, Université Lille-Nord de France (2010)

  3. Addam, M., Bouhamidi, A., Jbilou, K.: Signal reconstruction for the diffusion transport equation using tensorial spline Galerkin approximation. Appl. Numer. Math. 62, 1089–1108 (2012)

  4. Anile, A.M., Pennisi, S., Sammartino, M.A.: A thermodynamical approach to Eddington factors. J. Math. Phys. 32, 544–550 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Backofen, R., Bilz, T., Ribalta, A., Voigt, A.: \({SP}_{N}\)-approximations of internal radiation in crystal growth of optical materials. J. Cryst. Growth. 266, 264–270 (2004)

    Article  Google Scholar 

  6. Brunner, T.A., Holloway, J.P.: Two-dimensional time dependent Riemann solvers for neutron transport. J. Comput. Phys. 210, 386–399 (2005)

  7. Campbell, G.A., Foster, R.M.: Fourier Integrals for Practical Applications. D. Van Nostrand Company, New York (1948)

    Google Scholar 

  8. Fiveland, W.: The selection of discrete ordinate quadrature sets for anisotropic scattering. ASME HTD. Fundam. Radiat. Heat Transf. 160, 89–96 (1991)

    Google Scholar 

  9. Frank, M., Klar, A., Larsen, E.W., Yasuda, S.: Time-dependent simplified \({P}_{N}\) approximation to the equations of radiative transfer. J. Comput. Phys. 226, 2289–2305 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Frank, M., Lang, L., Schäfer, M.: Adaptive finite element simulation of the time-dependent simplified \({P}_{N}\) equations. J. Sci. Comput. 226, 2289–2305 (2007)

    MATH  Google Scholar 

  11. Gelbard, E.M.: Simplified spherical harmonics equations and their use in shielding problems. Technical Report WAPD-T-1182, Bettis Atomic Power Laboratory (1961)

  12. Gorpas, D., Yova, D., Politopoulos, K.: A three-dimensional finite elements approach for the coupled radiative transfer equation and diffusion approximation modeling in fluorescence imaging. J. Quant. Spectrosc. Radiat. Transf. 111, 553–568 (2010)

    Article  Google Scholar 

  13. Klose, A.D., Larsen, E.W.: Light transport in biological tissue based on the simplified spherical harmonics equations. J. Comput. Phys. 220, 441–470 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Klose, A.D., Poschinger, T.: Excitation-resolved fluorescence tomography with simplified spherical harmonics equations. Phys. Med. Biol. 56, 1443–1469 (2011)

    Article  Google Scholar 

  15. Kotiluoto, P.: Adaptive tree multigrids and simplified spherical harmonics approximation in deterministic neutral and charged particle transport. Ph.D. thesis, University of Helsinki, VTT Technical Research Centre of Finland (2007)

  16. Larsen, E., Morel, J., McGhee, J.: Asymptotic derivation of the multigroup \({P}_1\) and simplified \({P}_{N}\) equations with anisotropic scattering. Nucl. Sci. Eng. 123, 328–367 (1996)

    Google Scholar 

  17. Larsen, E., Thömmes, G., Klar, A., Seaid, M., Götz, T.: Simplified \({P}_{N}\) approximations to the equations of radiative heat transfer and applications. J. Comput. Phys. 183, 652–675 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Larsen, E.W.: Diffusion theory as an asymptotic limit of transport theory for nearly critical systems with small mean free paths. Ann. Nucl. Energy 7, 249–255 (1980)

    Article  Google Scholar 

  19. Lewis, E., Miller, W.: Computational Methods of Neutron Transport. Wiley, New York (1984)

    Google Scholar 

  20. Marshak, R.E.: Note on the spherical harmonic method as applied to the milne problem for a sphere. Phys. Rev. 71, 443–446 (1947)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mihalas, D., Mihalas, B.S.: Foundations of Radiation Hydrodynamics. Oxford University Press, New York (1983)

    Google Scholar 

  22. Modest, M.F.: Radiative Heat Transfer. McGraw-Hill, New York (1993)

    Google Scholar 

  23. Pomraning, G.C.: The Equations of Radiation Hydrodynamics. Pregamon press, Oxford (1973)

    Google Scholar 

  24. Sanz-Serna, J.M., Stuart, A.M.: A note on uniform in time error estimates for approximations to reaction-diffusion equations. IMA J. Numer. Anal. 12, 457–462 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  25. Seaid, M., Klar, A.: Efficient preconditioning of linear systems arising from the discretization of radiative transfer equation. Lect. Notes. Comput. Sci. 35, 211–236 (2003)

    Article  MathSciNet  Google Scholar 

  26. Su, B., Olson, G.L.: An analytical benchmark for non-equilibrium radiative transfer in an isotropically scattering medium. Ann. Nucl. Energy 24, 1035–1055 (1997)

    Article  Google Scholar 

  27. Tarvainen, T., Kolehmainen, V., Arridge, S.R., Kaipio, J.P.: Image reconstruction in diffuse optical tomography using the coupled radiative transport-diffusion model. J. Quant. Spectrosc. Radiat. Transf. 112, 2600–2668 (2011)

    Article  Google Scholar 

  28. Teleaga, I., Seaid, M.: Simplified radiative models for low Mach number reactive flows. Appl. Math. Model. 32, 971–991 (2009)

  29. Thömmes, G., Pinnau, R., Seaid, M., Götz, T., Klar, A.: Numerical methods and optimal control for glass cooling processes. Transp. Theory Stat. Phys. 31, 513–529 (2002)

    Article  MATH  Google Scholar 

  30. Viskanta, R., Anderson, E.E.: Heat transfer in semitransparent solids. Adv. Heat Transf. 11, 317–441 (1975)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly performed while the third author was visiting LMPA at Université Lille-Nord de France. Financial support provided by LMPA is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Addam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Addam, M., Bouhamidi, A. & Seaid, M. A Frequency-Domain Approach for the \(\hbox {P}_1\) Approximation of Time-Dependent Radiative Transfer. J Sci Comput 62, 623–651 (2015). https://doi.org/10.1007/s10915-014-9870-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9870-9

Keywords

Navigation