Skip to main content

Advertisement

Log in

Weighing the Risk: effects of Obesity on the Mammary Gland and Breast Cancer Risk

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Obesity is a preventable risk factor for breast cancer following menopause. Regardless of menopausal status, obese women who develop breast cancer have a worsened prognosis. Breast tissue is comprised of mammary epithelial cells organized into ducts and lobules and surrounded by adipose-rich connective tissue. Studies utilizing multiple in vivo models of obesity as well as human breast tissue have contributed to our understanding of how obesity alters mammary tissue. Localized changes in mammary epithelial cell populations, elevated secretion of adipokines and angiogenic mediators, inflammation within mammary adipose tissue, and remodeling of the extracellular matrix may result in an environment conducive to breast cancer growth. Despite these significant alterations caused by obesity within breast tissue, studies have suggested that some, but not all, obesity-induced changes may be mitigated with weight loss. Here, we review our current understanding regarding the impact of obesity on the breast microenvironment, how obesity-induced changes may contribute to breast tumor progression, and the impact of weight loss on the breast microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. World Health Organization. Obesity and overweight. Geneva: World Health Organization. 2017. http://www.entity/mediacentre/factsheets/fs311/en/index.html.

  2. Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity and severe obesity among adults: United States, 2017–2018. NCHS Data Brief, no 360. Hyattsville: National Center for Health Statistics, 2020.

  3. Romero-Corral A, Somers VK, Sierra-Johnson J, Thomas RJ, Collazo-Clavell ML, Korinek J, et al. Accuracy of body mass index in diagnosing obesity in the adult general population. Int J Obes. 2008;32(6):959–66. https://doi.org/10.1038/ijo.2008.11.

    Article  CAS  Google Scholar 

  4. Flegal KM, Kit BK, Orpana H, Graubard BI. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA. 2013;309(1):71–82. https://doi.org/10.1001/jama.2012.113905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bhaskaran K, Douglas I, Forbes H, dos-Santos-Silva I, Leon DA, Smeeth L. Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5·24 million UK adults. Lancet. 2014;384(9945):755–65. https://doi.org/10.1016/s0140-6736(14)60892-8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K. Body fatness and cancer–viewpoint of the IARC Working Group. N Engl J Med. 2016;375(8). https://doi.org/10.1056/NEJMsr1606602.

  7. van den Brandt PA, Spiegelman D, Yaun SS, Adami HO, Beeson L, Folsom AR, et al. Pooled analysis of prospective cohort studies on height, weight, and breast cancer risk. Am J Epidemiol. 2000;152(6). https://doi.org/10.1093/aje/152.6.514.

  8. Lahmann PH, Hoffmann K, Allen N, van Gils CH, Khaw KT, Tehard B, et al. Body size and breast cancer risk: findings from the European Prospective Investigation into Cancer and Nutrition (EPIC). Int J Cancer. 2004;111(5). https://doi.org/10.1002/ijc.20315.

  9. White AJ, Nichols HB, Bradshaw PT, Sandler DP. Overall and central adiposity and breast cancer risk in the Sister Study. Cancer. 2015;121(20). https://doi.org/10.1002/cncr.29552.

  10. Sebastiani F, Cortesi L, Sant M, Lucarini V, Cirilli C, De Matteis E, et al. Increased incidence of breast cancer in postmenopausal women with high body mass index at the Modena Screening Program. J Breast Cancer. 2016;19(3). https://doi.org/10.4048/jbc.2016.19.3.283.

  11. Neuhouser ML, Aragaki AK, Prentice RL, Manson JE, Chlebowski R, Carty CL, et al. Overweight, obesity, and postmenopausal invasive breast cancer risk: a secondary analysis of the Women’s Health Initiative Randomized Clinical Trials. JAMA Oncol. 2015. 2319235 https://doi.org/10.1001/jamaoncol.2015.1546

  12. Suzuki R, Orsini N, Saji S, Key TJ, Wolk A. Body weight and incidence of breast cancer defined by estrogen and progesterone receptor status–a meta-analysis. Int J Cancer. 2009;124(3). https://doi.org/10.1002/ijc.23943.

  13. Chen L, Cook LS, Tang MT, Porter PL, Hill DA, Wiggins CL, et al. Body mass index and risk of luminal, HER2-overexpressing, and triple negative breast cancer. Breast Cancer Res Treat. 2016;157(3). https://doi.org/10.1007/s10549-016-3825-9.

  14. Ritte R, Lukanova A, Berrino F, Dossus L, Tjønneland A, Olsen A, et al. Adiposity, hormone replacement therapy use and breast cancer risk by age and hormone receptor status: a large prospective cohort study. Breast Cancer Res. 2012;14(3). https://doi.org/10.1186/bcr3186.

  15. Phipps AI, Chlebowski RT, Prentice R, McTiernan A, Stefanick ML, Wactawski-Wende J, et al. Body size, physical activity, and risk of triple-negative and estrogen receptor-positive breast cancer. Cancer Epidemiol Biomarkers Prev. 2011;20(3). https://doi.org/10.1158/1055-9965.EPI-10-0974.

  16. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70. https://doi.org/10.1038/nature11412.

    Article  CAS  Google Scholar 

  17. Coates AS, Winer EP, Goldhirsch A, Gelber RD, Gnant M, Piccart-Gebhart M, et al. Tailoring therapies–improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. Ann Oncol. 2015;26(8):1533–46. https://doi.org/10.1093/annonc/mdv221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Prat A, Pineda E, Adamo B, Galván P, Fernández A, Gaba L, et al. Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast. 2015;24(Suppl 2):26–35. https://doi.org/10.1016/j.breast.2015.07.008.

    Article  Google Scholar 

  19. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27(8):1160–7. https://doi.org/10.1200/JCO.2008.18.1370.

  20. Gaudet MM, Press MF, Haile RW, Lynch CF, Glaser SL, Schildkraut J, et al. Risk factors by molecular subtypes of breast cancer across a population-based study of women 56 years or younger. Breast Cancer Res Treat. 2011;130(2):587–97. https://doi.org/10.1007/s10549-011-1616-x.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Toro AL, Costantino NS, Shriver CD, Ellsworth DL, Ellsworth RE. Effect of obesity on molecular characteristics of invasive breast tumors: gene expression analysis in a large cohort of female patients. BMC Obes. 2016;3:22. https://doi.org/10.1186/s40608-016-0103-7.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Vatten LJ, Kvinnsland S. Prospective study of height, body mass index and risk of breast cancer. Acta Oncol. 1992;31(2). https://doi.org/10.3109/02841869209088902.

  23. Ursin G, Longnecker MP, Haile RW, Greenland S. A Meta-analysis of body mass index and risk of premenopausal breast cancer. Epidemiol. 1995;6(2). https://doi.org/10.1097/00001648-199503000-00009.

  24. Bandera EV, Chandran U, Hong CC, Troester MA, Bethea TN, Adams-Campbell LL, et al. Obesity, body fat distribution, and risk of breast cancer subtypes in African American women participating in the AMBER Consortium. Breast Cancer Res Treat. 2015;150(3):655–66. https://doi.org/10.1007/s10549-015-3353-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Harris HR, Willett WC, Terry KL, Michels KB. Body fat distribution and risk of premenopausal breast cancer in the Nurses’ Health Study II. J Natl Cancer Inst. 2011;103(3). https://doi.org/10.1093/jnci/djq500.

  26. Chen GC, Chen SJ, Zhang R, Hidayat K, Qin JB, Zhang YS, et al. Central obesity and risks of pre- and postmenopausal breast cancer: a dose-response meta-analysis of prospective studies. Obes Rev. 2016;17(11):1167–77. https://doi.org/10.1111/obr.12443.

    Article  PubMed  Google Scholar 

  27. Sonnenschein E, Toniolo P, Terry MB, Bruning PF, Kato I, Koenig KL, et al. Body fat distribution and obesity in pre- and postmenopausal breast cancer. Int J Epidemiol. 1999;28(6):1026–31. https://doi.org/10.1093/ije/28.6.1026.

    Article  CAS  PubMed  Google Scholar 

  28. Fagherazzi G, Chabbert-Buffet N, Fabre A, Guillas G, Boutron-Ruault MC, Mesrine S, et al. Hip circumference is associated with the risk of premenopausal ER-/PR- breast cancer. Int J Obes. 2012;36(3):431–9. https://doi.org/10.1038/ijo.2011.66.

    Article  CAS  Google Scholar 

  29. Amadou A, Hainaut P, Romieu I. Role of obesity in the risk of breast cancer: lessons from anthropometry. J Oncol. 2013;2013:19.

    Article  Google Scholar 

  30. Sahin S, Erdem GU, Karatas F, Aytekin A, Sever AR, Ozisik Y, et al. The association between body mass index and immunohistochemical subtypes in breast cancer. Breast. 2017;32. https://doi.org/10.1016/j.breast.2016.09.019.

  31. Pierobon M, Frankenfeld CL. Obesity as a risk factor for triple-negative breast cancers: a systematic review and meta-analysis. Breast Cancer Res Treat. 2013;137(1). https://doi.org/10.1007/s10549-012-2339-3.

  32. Cecchini RS, Costantino JP, Cauley JA, Cronin WM, Wickerham DL, Land SR, et al. Body mass index and the risk for developing invasive breast cancer among high-risk women in NSABP P-1 and STAR breast cancer prevention trials. Cancer Prev Res. 2012;5(4):583–92. https://doi.org/10.1158/1940-6207.Capr-11-0482.

    Article  CAS  Google Scholar 

  33. Chan DS, Vieira AR, Aune D, Bandera EV, Greenwood DC, McTiernan A, et al. Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies. Ann Oncol. 2014;25(10):1901-14. https://doi.org/10.1093/annonc/mdu042.

  34. Protani M, Coory M, Martin JH. Effect of obesity on survival of women with breast cancer: systematic review and meta-analysis. Breast Cancer Res Treat. 2010;123(3). https://doi.org/10.1007/s10549-010-0990-0.

  35. Ewertz M, Jensen MB, Gunnarsdottir KA, Hojris I, Jakobsen EH, Nielsen D, et al. Effect of obesity on prognosis after early-stage breast cancer. J Clin Oncol. 2011;29(1):25–31. https://doi.org/10.1200/JCO.2010.29.7614.

    Article  PubMed  Google Scholar 

  36. Loi S, Milne RL, Friedlander ML, McCredie MR, Giles GG, Hopper JL, et al. Obesity and outcomes in premenopausal and postmenopausal breast cancer. Cancer Epidemiol Biomarkers Prev. 2005;14(7):1686–91. https://doi.org/10.1158/1055-9965.epi-05-0042.

    Article  PubMed  Google Scholar 

  37. Ewertz M, Gray KP, Regan MM, Ejlertsen B, Price KN, Thürlimann B, et al. Obesity and risk of recurrence or death after adjuvant endocrine therapy with letrozole or tamoxifen in the Breast International Group 1–98 Trial. J Clin Oncol. 2012;30(32). https://doi.org/10.1200/JCO.2011.40.8666.

  38. Biglia N, Peano E, Sgandurra P, Moggio G, Pecchio S, Maggiorotto F, et al. Body mass index (BMI) and breast cancer: impact on tumor histopathologic features, cancer subtypes and recurrence rate in pre and postmenopausal women. Gynecol Endocrinol. 2013;29(3):263–7. https://doi.org/10.3109/09513590.2012.736559.

    Article  PubMed  Google Scholar 

  39. Karatas F, Erdem GU, Sahin S, Aytekin A, Yuce D, Sever AR, et al. Obesity is an independent prognostic factor of decreased pathological complete response to neoadjuvant chemotherapy in breast cancer patients. Breast. 2017;32:237–44. https://doi.org/10.1016/j.breast.2016.05.013.

    Article  PubMed  Google Scholar 

  40. Ioannides SJ, Barlow PL, Elwood JM, Porter D. Effect of obesity on aromatase inhibitor efficacy in postmenopausal, hormone receptor-positive breast cancer: a systematic review. Breast Cancer Res Treat. 2014;147(2):237–48. https://doi.org/10.1007/s10549-014-3091-7.

    Article  CAS  PubMed  Google Scholar 

  41. Sparano JA, Wang M, Zhao F, Stearns V, Martino S, Ligibel JA, et al. Obesity at diagnosis is associated with inferior outcomes in hormone receptor-positive operable breast cancer. Cancer. 2012;118(23):5937–46. https://doi.org/10.1002/cncr.27527.

    Article  CAS  PubMed  Google Scholar 

  42. Sestak I, Distler W, Forbes JF, Dowsett M, Howell A, Cuzick J. Effect of body mass index on recurrences in tamoxifen and anastrozole treated women: an exploratory analysis from the ATAC trial. J Clin Oncol. 2010;28(21):3411–5. https://doi.org/10.1200/jco.2009.27.2021.

    Article  CAS  PubMed  Google Scholar 

  43. Gnant M, Pfeiler G, Stoger H, Mlineritsch B, Fitzal F, Balic M, et al. The predictive impact of body mass index on the efficacy of extended adjuvant endocrine treatment with anastrozole in postmenopausal patients with breast cancer: an analysis of the randomised ABCSG-6a trial. Br J Cancer. 2013;109(3):589–96. https://doi.org/10.1038/bjc.2013.367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wolters R, Schwentner L, Regierer A, Wischnewsky M, Kreienberg R, Wockel A. Endocrine therapy in obese patients with primary breast cancer: another piece of evidence in an unfinished puzzle. Breast Cancer Res Treat. 2012;131(3):925–31. https://doi.org/10.1007/s10549-011-1874-7.

    Article  CAS  PubMed  Google Scholar 

  45. Pfeiler G, Konigsberg R, Fesl C, Mlineritsch B, Stoeger H, Singer CF, et al. Impact of body mass index on the efficacy of endocrine therapy in premenopausal patients with breast cancer: an analysis of the prospective ABCSG-12 trial. J Clin Oncol. 2011;29(19):2653–9. https://doi.org/10.1200/jco.2010.33.2585.

    Article  CAS  PubMed  Google Scholar 

  46. Barrett P, Mercer JG, Morgan PJ. Preclinical models for obesity research. Dis Model Mech. 2016;9(11):1245–55. https://doi.org/10.1242/dmm.026443.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Coleman DL. Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia. 1978;14(3):141–8.

    Article  CAS  PubMed  Google Scholar 

  48. Ingalls AM, Dickie MM, Snell GD. Obese, a new mutation in the house mouse. J Hered. 1950;41(12):317–8. https://doi.org/10.1093/oxfordjournals.jhered.a106073.

    Article  CAS  PubMed  Google Scholar 

  49. Collins S, Martin TL, Surwit RS, Robidoux J. Genetic vulnerability to diet-induced obesity in the C57BL/6J mouse: physiological and molecular characteristics. Physiol Behav. 2004;81(2):243–8. https://doi.org/10.1016/j.physbeh.2004.02.006.

    Article  CAS  PubMed  Google Scholar 

  50. West DB, Boozer CN, Moody DL, Atkinson RL. Dietary obesity in nine inbred mouse strains. Am J Physiol. 1992;262(6 Pt 2):R1025-32. https://doi.org/10.1152/ajpregu.1992.262.6.R1025.

    Article  PubMed  Google Scholar 

  51. Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN. Diet-induced type II diabetes in C57BL/6J mice. Diabetes. 1988;37(9):1163–7. https://doi.org/10.2337/diab.37.9.1163.

    Article  CAS  PubMed  Google Scholar 

  52. Montgomery MK, Hallahan NL, Brown SH, Liu M, Mitchell TW, Cooney GJ, et al. Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia. 2013;56(5):1129–39. https://doi.org/10.1007/s00125-013-2846-8.

    Article  CAS  PubMed  Google Scholar 

  53. Olson LK, Tan Y, Zhao Y, Aupperlee MD, Haslam SZ. Pubertal exposure to high fat diet causes mouse strain-dependent alterations in mammary gland development and estrogen responsiveness. Int J Obes. 2010;34(9):1415–26. https://doi.org/10.1038/ijo.2010.51.

    Article  CAS  Google Scholar 

  54. Panchal SK, Brown L. Rodent models for metabolic syndrome research. J Biomed Biotechnol. 2011;2011:351982. https://doi.org/10.1155/2011/351982.

    Article  PubMed  Google Scholar 

  55. Lutz TA, Woods SC. Overview of animal models of obesity. Curr Protoc Pharmacol. 2012;Chap. 5:Unit5.61. https://doi.org/10.1002/0471141755.ph0561s58.

  56. Giles ED, Jackman MR, MacLean PS. Modeling diet-induced obesity with obesity-prone rats: implications for studies in females. Front Nutr. 2016;3:50. https://doi.org/10.3389/fnut.2016.00050.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Imaoka T, Nishimura M, Daino K, Morioka T, Nishimura Y, Uemura H, et al. A rat model to study the effects of diet-induced obesity on radiation-induced mammary carcinogenesis. Radiat Res. 2016;185(5):505–15. https://doi.org/10.1667/rr14309.1.

    Article  CAS  PubMed  Google Scholar 

  58. Gimble JM, Bunnell BA, Frazier T, Rowan B, Shah F, Thomas-Porch C, et al. Adipose-derived stromal/stem cells: a primer. Organogenesis. 2013;9(1):3–10. https://doi.org/10.4161/org.24279.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bowers LW, Rossi EL, O’Flanagan CH, deGraffenried LA, Hursting SD. The role of the insulin/IGF system in cancer: lessons learned from clinical trials and the energy balance-cancer link. Front Endocrinol. 2015;6:77. https://doi.org/10.3389/fendo.2015.00077.

    Article  Google Scholar 

  60. Johnson AR, Makowski L. Nutrition and metabolic correlates of obesity and inflammation: clinical considerations. J Nutr. 2015;145(5). https://doi.org/10.3945/jn.114.200758.

  61. Gallagher EJ, LeRoith D. Obesity and diabetes: the increased risk of cancer and cancer-related mortality. Physiol Rev. 2015;95(3). https://doi.org/10.1152/physrev.00030.2014.

  62. Kang C, LeRoith D, Gallagher EJ. Diabetes, obesity, and breast cancer. Endocrinol. 2018;159(11):3801–12. https://doi.org/10.1210/en.2018-00574.

    Article  CAS  Google Scholar 

  63. Hursting SD. Obesity, energy balance, and cancer: a mechanistic perspective. Cancer Treat Res. 2014;159. https://doi.org/10.1007/978-3-642-38007-5_2.

  64. Matthews SB, Thompson HJ. The obesity-breast cancer conundrum: an analysis of the issues. Int J Mol Sci 2016;17(6). https://doi.org/10.3390/ijms17060989.

  65. Sánchez-Jiménez F, Pérez-Pérez A, de la Cruz-Merino L, Sánchez-Margalet V. Obesity and breast cancer: role of leptin. Front Oncol. 2019;9. https://doi.org/10.3389/fonc.2019.00596.

  66. Oakes SR, Gallego-Ortega D, Ormandy CJ. The mammary cellular hierarchy and breast cancer. Cell Mol Life Sci. 2014;71(22):4301–24. https://doi.org/10.1007/s00018-014-1674-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Visvader JE. Cells of origin in cancer. Nature. 2011;469(7330):314–22. nature09781 [pii];10.1038/nature09781 [doi].

    Article  CAS  PubMed  Google Scholar 

  68. Tharmapalan P, Mahendralingam M, Berman HK, Khokha R. Mammary stem cells and progenitors: targeting the roots of breast cancer for prevention. EMBO J. 2019;38(14):e100852. https://doi.org/10.15252/embj.2018100852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shehata M, Teschendorff A, Sharp G, Novcic N, Russell IA, Avril S, et al. Phenotypic and functional characterisation of the luminal cell hierarchy of the mammary gland. Breast Cancer Res. 2012;14(5):R134. https://doi.org/10.1186/bcr3334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sleeman KE, Kendrick H, Ashworth A, Isacke CM, Smalley MJ. CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Res. 2006;8(1):R7. https://doi.org/10.1186/bcr1371.

    Article  CAS  PubMed  Google Scholar 

  71. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439(7072):84–8. https://doi.org/10.1038/nature04372.

    Article  CAS  PubMed  Google Scholar 

  72. Stingl J, Eaves CJ, Zandieh I, Emerman JT. Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res Treat. 2001;67(2):93–109. https://doi.org/10.1023/a:1010615124301.

  73. Chamberlin T, D’Amato JV, Arendt LM. Obesity reversibly depletes the basal cell population and enhances mammary epithelial cell estrogen receptor alpha expression and progenitor activity. Breast Cancer Res. 2017;19(1):128. https://doi.org/10.1186/s13058-017-0921-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kamikawa A, Ichii O, Yamaji D, Imao T, Suzuki C, Okamatsu-Ogura Y, et al. Diet-induced obesity disrupts ductal development in the mammary glands of nonpregnant mice. Dev Dyn. 2009;238(5):1092–9. https://doi.org/10.1002/dvdy.21947.

    Article  CAS  PubMed  Google Scholar 

  75. Barsky SH, Karlin NJ. Myoepithelial cells: autocrine and paracrine suppressors of breast cancer progression. J Mammary Gland Biol Neoplasia. 2005;10(3):249–60. https://doi.org/10.1007/s10911-005-9585-5.

    Article  PubMed  Google Scholar 

  76. Pilie PG, Ibarra-Drendall C, Troch MM, Broadwater G, Barry WT, Petricoin EF 3rd. Protein microarray analysis of mammary epithelial cells from obese and nonobese women at high risk for breast cancer: feasibility data. Cancer Epidemiol Biomarkers Prev. 2011;20(3):476–82. https://doi.org/10.1158/1055-9965.EPI-10-0847. rd et al.

  77. Sainz N, Barrenetxe J, Moreno-Aliaga MJ, Martinez JA. Leptin resistance and diet-induced obesity: central and peripheral actions of leptin. Metabolism. 2015;64(1):35–46. https://doi.org/10.1016/j.metabol.2014.10.015.

    Article  CAS  PubMed  Google Scholar 

  78. Enriori PJ, Evans AE, Sinnayah P, Cowley MA. Leptin resistance and obesity. Obesity. 2006;14 Suppl 5:254 s-8 s. https://doi.org/10.1038/oby.2006.319.

  79. Garofalo C, Koda M, Cascio S, Sulkowska M, Kanczuga-Koda L, Golaszewska J, et al. Increased expression of leptin and the leptin receptor as a marker of breast cancer progression: possible role of obesity-related stimuli. Clin Cancer Res. 2006;12(5):1447–53. https://doi.org/10.1158/1078-0432.Ccr-05-1913.

    Article  CAS  PubMed  Google Scholar 

  80. Miyoshi Y, Funahashi T, Tanaka S, Taguchi T, Tamaki Y, Shimomura I, et al. High expression of leptin receptor mRNA in breast cancer tissue predicts poor prognosis for patients with high, but not low, serum leptin levels. Int J Cancer. 2006;118(6):1414–9. https://doi.org/10.1002/ijc.21543.

    Article  CAS  PubMed  Google Scholar 

  81. Tenvooren I, Jenks MZ, Rashid H, Cook KL, Muhlemann JK, Sistrunk C, et al. Elevated leptin disrupts epithelial polarity and promotes premalignant alterations in the mammary gland. Oncogene. 2019;38(20):3855–70. https://doi.org/10.1038/s41388-019-0687-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Esper RM, Dame M, McClintock S, Holt PR, Dannenberg AJ, Wicha MS, et al. Leptin and adiponectin modulate the self-renewal of normal human breast epithelial stem cells. Cancer Prev Res. 2015;8(12):1174–83. https://doi.org/10.1158/1940-6207.capr-14-0334.

    Article  CAS  Google Scholar 

  83. Wang T, Fahrmann JF, Lee H, Li YJ, Tripathi SC, Yue C, et al. JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab. 2018;27(1):136 – 50.e5. https://doi.org/10.1016/j.cmet.2017.11.001.

    Article  CAS  PubMed  Google Scholar 

  84. Mahbouli S, Der Vartanian A, Ortega S, Rouge S, Vasson MP, Rossary A. Leptin induces ROS via NOX5 in healthy and neoplastic mammary epithelial cells. Oncol Rep. 2017;38(5):3254–64. https://doi.org/10.3892/or.2017.6009.

    Article  CAS  PubMed  Google Scholar 

  85. Hillers LE, D’Amato JV, Chamberlin T, Paderta G, Arendt LM. Obesity-activated adipose-derived stromal cells promote breast cancer growth and invasion. Neoplasia. 2018;20(11):1161–74. https://doi.org/10.1016/j.neo.2018.09.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kleinberg DL, Feldman M, Ruan W. IGF-I: an essential factor in terminal end bud formation and ductal morphogenesis. J Mammary Gland Biol Neoplasia. 2000;5(1):11. https://doi.org/10.1023/a:1009507030633.

    Article  Google Scholar 

  87. Welsch CW, O’Connor DH. Influence of the type of dietary fat on developmental growth of the mammary gland in immature and mature female BALB/c mice. Cancer Res. 1989;49(21):5999–6007.

    CAS  PubMed  Google Scholar 

  88. Welsch CW, DeHoog JV, O’Connor DH, Sheffield LG. Influence of dietary fat levels on development and hormone responsiveness of the mouse mammary gland. Cancer Res. 1985;45(12 Pt 1):6147–54.

    CAS  PubMed  Google Scholar 

  89. Hilakivi-Clarke L, Stoica A, Raygada M, Martin M. Consumption of a high-fat diet alters estrogen receptor content, protein kinase C activity, and mammary gland morphology in virgin and pregnant mice and female offspring. Cancer Res. 1998;58(4):654–60.

    CAS  PubMed  Google Scholar 

  90. Berryhill GE, Gloviczki JM, Trott JF, Aimo L, Kraft J, Cardiff RD, et al. Diet-induced metabolic change induces estrogen-independent allometric mammary growth. Proc Natl Acad Sci U S A. 2012;109(40):16294–9. https://doi.org/10.1073/pnas.1210527109.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ip MM, McGee SO, Masso-Welch PA, Ip C, Meng X, Ou L, et al. The t10,c12 isomer of conjugated linoleic acid stimulates mammary tumorigenesis in transgenic mice over-expressing erbB2 in the mammary epithelium. Carcinogenesis. 2007;28(6):1269–76. https://doi.org/10.1093/carcin/bgm018.

    Article  CAS  PubMed  Google Scholar 

  92. Khadge S, Thiele GM, Sharp JG, McGuire TR, Klassen LW, Black PN, et al. Long-chain omega-3 polyunsaturated fatty acids modulate mammary gland composition and inflammation. J Mammary Gland Biol Neoplasia. 2018;23(1–2):43–58. https://doi.org/10.1007/s10911-018-9391-5.

    Article  PubMed  Google Scholar 

  93. Farvid MS, Cho E, Chen WY, Eliassen AH, Willett WC. Premenopausal dietary fat in relation to pre- and post-menopausal breast cancer. Breast Cancer Res Treat. 2014;145(1):255–65. https://doi.org/10.1007/s10549-014-2895-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang QA, Song A, Chen W, Schwalie PC, Zhang F, Vishvanath L, et al. Reversible de-differentiation of mature white adipocytes into preadipocyte-like precursors during lactation. Cell Metab. 2018;28(2):282–8.e3. https://doi.org/10.1016/j.cmet.2018.05.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zwick RK, Rudolph MC, Shook BA, Holtrup B, Roth E, Lei V, et al. Adipocyte hypertrophy and lipid dynamics underlie mammary gland remodeling after lactation. Nature Commun. 2018;9(1):3592. https://doi.org/10.1038/s41467-018-05911-0.

    Article  CAS  Google Scholar 

  96. Weaver SR, Bohrer JC, Prichard AS, Perez PK, Streckenbach LJ, Olson JM, et al. Serotonin deficiency rescues lactation on day 1 in mice fed a high fat diet. PLoS One. 2016;11(9):e0162432. https://doi.org/10.1371/journal.pone.0162432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Flint DJ, Travers MT, Barber MC, Binart N, Kelly PA. Diet-induced obesity impairs mammary development and lactogenesis in murine mammary gland. Am J Physiol Endocrinol Metab. 2005;288(6):E1179-87. https://doi.org/10.1152/ajpendo.00433.2004.

    Article  CAS  PubMed  Google Scholar 

  98. Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005;46(11):2347–55. https://doi.org/10.1194/jlr.M500294-JLR200.

    Article  CAS  PubMed  Google Scholar 

  99. Giordano A, Murano I, Mondini E, Perugini J, Smorlesi A, Severi I, et al. Obese adipocytes show ultrastructural features of stressed cells and die of pyroptosis. J Lipid Res. 2013;54(9). https://doi.org/10.1194/jlr.M038638.

  100. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–95. https://doi.org/10.1091/mbc.E02-02-0105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28. https://doi.org/10.1089/107632701300062859.

    Article  CAS  PubMed  Google Scholar 

  102. Kilroy G, Dietrich M, Wu X, Gimble JM, Floyd ZE. Isolation of murine adipose-derived stromal/stem cells for adipogenic differentiation or flow cytometry-based analysis. Methods Mol Biol. 2018;1773:137–46. https://doi.org/10.1007/978-1-4939-7799-4_11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 2013;15(6):641–8. https://doi.org/10.1016/j.jcyt.2013.02.006.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Zhang Y, Daquinag AC, Amaya-Manzanares F, Sirin O, Tseng C, Kolonin MG. Stromal progenitor cells from endogenous adipose tissue contribute to pericytes and adipocytes that populate the tumor microenvironment. Cancer Res. 2012;72(20):5198–208. https://doi.org/10.1158/0008-5472.can-12-0294.

    Article  CAS  PubMed  Google Scholar 

  105. Pachon-Pena G, Serena C, Ejarque M, Petriz J, Duran X, Oliva-Olivera W, et al. Obesity determines the immunophenotypic profile and functional characteristics of human mesenchymal stem cells from adipose tissue. Stem Cells Transl Med. 2016;5(4):464–75. https://doi.org/10.5966/sctm.2015-0161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Frazier TP, Gimble JM, Devay JW, Tucker HA, Chiu ES, Rowan BG. Body mass index affects proliferation and osteogenic differentiation of human subcutaneous adipose tissue-derived stem cells. BMC Cell Biol. 2013;14:34. https://doi.org/10.1186/1471-2121-14-34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Isakson P, Hammarstedt A, Gustafson B, Smith U. Impaired preadipocyte differentiation in human abdominal obesity: role of Wnt, tumor necrosis factor-alpha, and inflammation. Diabetes. 2009;58(7):1550–7. https://doi.org/10.2337/db08-1770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Permana PA, Nair S, Lee YH, Luczy-Bachman G, Vozarova De Courten B, Tataranni PA. Subcutaneous abdominal preadipocyte differentiation in vitro inversely correlates with central obesity. Am J Physiol Endocrinol Metab. 2004;286(6):E958-62. https://doi.org/10.1152/ajpendo.00544.2003.

    Article  PubMed  Google Scholar 

  109. Onate B, Vilahur G, Ferrer-Lorente R, Ybarra J, Diez-Caballero A, Ballesta-Lopez C, et al. The subcutaneous adipose tissue reservoir of functionally active stem cells is reduced in obese patients. FASEB J. 2012;26(10):4327–36. https://doi.org/10.1096/fj.12-207217.

    Article  CAS  PubMed  Google Scholar 

  110. Strong AL, Hunter RS, Jones RB, Bowles AC, Dutreil MF, Gaupp D, et al. Obesity inhibits the osteogenic differentiation of human adipose-derived stem cells. J Transl Med. 2016;14:27. https://doi.org/10.1186/s12967-016-0776-1.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Wu CL, Diekman BO, Jain D, Guilak F. Diet-induced obesity alters the differentiation potential of stem cells isolated from bone marrow, adipose tissue and infrapatellar fat pad: the effects of free fatty acids. Int J Obes. 2013;37(8):1079–87. https://doi.org/10.1038/ijo.2012.171.

    Article  CAS  Google Scholar 

  112. Kim KH, Song MJ, Chung J, Park H, Kim JB. Hypoxia inhibits adipocyte differentiation in a HDAC-independent manner. Biochem Biophys Res Commun. 2005;333(4):1178–84. https://doi.org/10.1016/j.bbrc.2005.06.023.

    Article  CAS  PubMed  Google Scholar 

  113. Yun Z, Maecker HL, Johnson RS, Giaccia AJ. Inhibition of PPAR gamma 2 gene expression by the HIF-1-regulated gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia. Dev Cell. 2002;2(3):331–41. https://doi.org/10.1016/s1534-5807(02)00131-4.

    Article  CAS  PubMed  Google Scholar 

  114. Seo BR, Bhardwaj P, Choi S, Gonzalez J, Andresen Eguiluz RC, Wang K, et al. Obesity-dependent changes in interstitial ECM mechanics promote breast tumorigenesis. Sci Transl Med. 2015;7(301):301ra130. https://doi.org/10.1126/scitranslmed.3010467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wolfson B, Zhang Y, Gernapudi R, Duru N, Yao Y, Lo PK, et al. A high-fat diet promotes mammary gland myofibroblast differentiation through MicroRNA 140 downregulation. Mol Cell Biol. 2017;37(4). https://doi.org/10.1128/mcb.00461-16.

  116. Serena C, Keiran N, Ceperuelo-Mallafre V, Ejarque M, Fradera R, Roche K, et al. Obesity and type 2 diabetes alters the immune properties of human adipose derived stem cells. Stem Cells. 2016;34(10):2559–73. https://doi.org/10.1002/stem.2429.

    Article  CAS  PubMed  Google Scholar 

  117. Strong AL, Semon JA, Strong TA, Santoke TT, Zhang S, McFerrin HE, et al. Obesity-associated dysregulation of calpastatin and MMP-15 in adipose-derived stromal cells results in their enhanced invasion. Stem Cells. 2012;30(12):2774–83. https://doi.org/10.1002/stem.1229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Druso JE, Fischbach C. Biophysical properties of extracellular matrix: linking obesity and cancer. Trends Cancer. 2018;4(4):271–3. https://doi.org/10.1016/j.trecan.2018.02.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sun K, Tordjman J, Clement K, Scherer PE. Fibrosis and adipose tissue dysfunction. Cell Metab. 2013;18(4):470–7. https://doi.org/10.1016/j.cmet.2013.06.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Park J, Scherer PE. Adipocyte-derived endotrophin promotes malignant tumor progression. J Clin Invest. 2012;122(11):4243–56. https://doi.org/10.1172/jci63930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bulun SE, Simpson ER. Competitive reverse transcription-polymerase chain reaction analysis indicates that levels of aromatase cytochrome P450 transcripts in adipose tissue of buttocks, thighs, and abdomen of women increase with advancing age. J Clin Endocrinol Metab. 1994;78(2):428–32. https://doi.org/10.1210/jcem.78.2.8106632.

    Article  CAS  PubMed  Google Scholar 

  122. Morris PG, Hudis CA, Giri D, Morrow M, Falcone DJ, Zhou XK, et al. Inflammation and increased aromatase expression occur in the breast tissue of obese women with breast cancer. Cancer Prev Res. 2011;4(7):1021–9. https://doi.org/10.1158/1940-6207.CAPR-11-0110.

    Article  CAS  Google Scholar 

  123. Brown KA, Iyengar NM, Zhou XK, Gucalp A, Subbaramaiah K, Wang H, et al. Menopause is a determinant of breast aromatase expression and its associations with BMI, inflammation, and systemic markers. J Clin Endocrinol Metab. 2017;102(5). https://doi.org/10.1210/jc.2016-3606.

  124. Wake DJ, Strand M, Rask E, Westerbacka J, Livingstone DE, Soderberg S, et al. Intra-adipose sex steroid metabolism and body fat distribution in idiopathic human obesity. Clin Endocrinol. 2007;66(3):440–6. https://doi.org/10.1111/j.1365-2265.2007.02755.x.

    Article  CAS  Google Scholar 

  125. Irahara N, Miyoshi Y, Taguchi T, Tamaki Y, Noguchi S. Quantitative analysis of aromatase mRNA expression derived from various promoters (I.4, I.3, PII and I.7) and its association with expression of TNF-alpha, IL-6 and COX-2 mRNAs in human breast cancer. Int J Cancer. 2006;118(8):1915–21. https://doi.org/10.1002/ijc.21562.

    Article  CAS  PubMed  Google Scholar 

  126. Salama SA, Kamel MW, Diaz-Arrastia CR, Xu X, Veenstra TD, Salih S, et al. Effect of tumor necrosis factor-alpha on estrogen metabolism and endometrial cells: potential physiological and pathological relevance. J Clin Endocrinol Metab. 2009;94(1):285–93. https://doi.org/10.1210/jc.2008-1389.

    Article  CAS  PubMed  Google Scholar 

  127. Purohit A, Newman SP, Reed MJ. The role of cytokines in regulating estrogen synthesis: implications for the etiology of breast cancer. Breast Cancer Res. 2002;4(2):65–9. https://doi.org/10.1186/bcr425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Reed MJ, Coldham NG, Patel SR, Ghilchik MW, James VH. Interleukin-1 and interleukin-6 in breast cyst fluid: their role in regulating aromatase activity in breast cancer cells. J Endocrinol. 1992;132(3):R5–8. https://doi.org/10.1677/joe.0.132r005.

    Article  PubMed  Google Scholar 

  129. Brady NJ, Farrar MA, Schwertfeger KL. STAT5 deletion in macrophages alters ductal elongation and branching during mammary gland development. Dev Biol. 2017;428(1). https://doi.org/10.1016/j.ydbio.2017.06.007.

  130. Folkerd EJ, Dixon JM, Renshaw L, A’Hern RP, Dowsett M. Suppression of plasma estrogen levels by letrozole and anastrozole is related to body mass index in patients with breast cancer. J Clin Oncol. 2012;30(24):2977–80. https://doi.org/10.1200/jco.2012.42.0273.

    Article  CAS  PubMed  Google Scholar 

  131. Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, et al. A lineage of myeloid cells independent of myb and hematopoietic stem cells. Science. 2012;336(6077). https://doi.org/10.1126/science.1219179.

  132. Hassnain Waqas SF, Noble A, Hoang AC, Ampem G, Popp M, Strauß S, et al. Adipose tissue macrophages develop from bone marrow-independent progenitors in Xenopus laevis and mouse. J Leukoc Biol. 2017;102(3). https://doi.org/10.1189/jlb.1A0317-082RR.

  133. Jappinen N, Felix I, Lokka E, Tyystjarvi S, Pynttari A, Lahtela T, et al. Fetal-derived macrophages dominate in adult mammary glands. Nature Commun. 2019;10(1):281. https://doi.org/10.1038/s41467-018-08065-1.

    Article  CAS  Google Scholar 

  134. Russo L, Lumeng CN. Properties and functions of adipose tissue macrophages in obesity. Immunol. 2018;155(4):407–17. https://doi.org/10.1111/imm.13002.

    Article  CAS  Google Scholar 

  135. Stewart TA, Hughes K, Hume DA, Davis FM. Developmental stage-specific distribution of macrophages in mouse mammary gland. Front Cell Dev Biol. 2019;7:250. https://doi.org/10.3389/fcell.2019.00250.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Gyorki DE, Asselin-Labat ML, van Rooijen N, Lindeman GJ, Visvader JE. Resident macrophages influence stem cell activity in the mammary gland. Breast Cancer Res. 2009;11(4):R62. https://doi.org/10.1186/bcr2353.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Chakrabarti R, Celia-Terrassa T, Kumar S, Hang X, Wei Y, Choudhury A, et al. Notch ligand Dll1 mediates cross-talk between mammary stem cells and the macrophageal niche. Science. 2018;360(6396). https://doi.org/10.1126/science.aan4153.

  138. O’Brien J, Lyons T, Monks J, Lucia MS, Wilson RS, Hines L, et al. Alternatively activated macrophages and collagen remodeling characterize the postpartum involuting mammary gland across species. Am J Pathol. 2010;176(3):1241–55. https://doi.org/10.2353/ajpath.2010.090735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Muir LA, Kiridena S, Griffin C, DelProposto JB, Geletka L, Martinez-Santibanez G, et al. Frontline Science: Rapid adipose tissue expansion triggers unique proliferation and lipid accumulation profiles in adipose tissue macrophages. J Leukoc Biol. 2018;103(4):615–28. https://doi.org/10.1002/jlb.3hi1017-422r.

    Article  CAS  PubMed  Google Scholar 

  140. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 2006;116(6):1494–505. https://doi.org/10.1172/JCI26498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Oh DY, Morinaga H, Talukdar S, Bae EJ, Olefsky JM. Increased macrophage migration into adipose tissue in obese mice. Diabetes. 2012;61(2):346–54. https://doi.org/10.2337/db11-0860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes. 2007;56(1):16–23. https://doi.org/10.2337/db06-1076.

    Article  CAS  PubMed  Google Scholar 

  143. Kaplan JL, Marshall MA, C CM, Harmon DB, Garmey JC, Oldham SN, et al. Adipocyte progenitor cells initiate monocyte chemoattractant protein-1-mediated macrophage accumulation in visceral adipose tissue. Mol Metab. 2015;4(11):779–94. https://doi.org/10.1016/j.molmet.2015.07.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest. 2006;116(1):115–24. https://doi.org/10.1172/JCI24335.

    Article  CAS  PubMed  Google Scholar 

  145. Kim J, Chung K, Choi C, Beloor J, Ullah I, Kim N et al (2016) Silencing CCR2 in macrophages alleviates adipose tissue inflammation and the associated metabolic syndrome in dietary obese mice. Mol Ther Nucleic Acids 5:e280. https://doi.org/10.1038/mtna.2015.51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808. https://doi.org/10.1172/jci200319246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–30. https://doi.org/10.1172/jci200319451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kraakman MJ, Murphy AJ, Jandeleit-Dahm K, Kammoun HL. Macrophage polarization in obesity and type 2 diabetes: weighing down our understanding of macrophage function? Front Immunol. 2014;5:470. https://doi.org/10.3389/fimmu.2014.00470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kratz M, Coats BR, Hisert KB, Hagman D, Mutskov V, Peris E, et al. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab. 2014;20(4):614–25. https://doi.org/10.1016/j.cmet.2014.08.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Boutens L, Hooiveld GJ, Dhingra S, Cramer RA, Netea MG, Stienstra R. Unique metabolic activation of adipose tissue macrophages in obesity promotes inflammatory responses. Diabetologia. 2018;61(4):942–53. https://doi.org/10.1007/s00125-017-4526-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Tiwari P, Blank A, Cui C, Schoenfelt KQ, Zhou G, Xu Y, et al. Metabolically activated adipose tissue macrophages link obesity to triple-negative breast cancer. J Exp Med. 2019;216(6):1345–58. https://doi.org/10.1084/jem.20181616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Henegar C, Tordjman J, Achard V, Lacasa D, Cremer I, Guerre-Millo M, et al. Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity. Genome Biol. 2008;9(1):R14. https://doi.org/10.1186/gb-2008-9-1-r14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Tanaka M, Ikeda K, Suganami T, Komiya C, Ochi K, Shirakawa I, et al. Macrophage-inducible C-type lectin underlies obesity-induced adipose tissue fibrosis. Nature Commun. 2014;5:4982. https://doi.org/10.1038/ncomms5982.

    Article  CAS  Google Scholar 

  154. Chamberlin T, Thompson V, Hillers-Ziemer LE, Walton BN, Arendt LM. Obesity reduces mammary epithelial cell TGFβ1 activity through macrophage-mediated extracellular matrix remodeling. FASEB J. 2020. https://doi.org/10.1096/fj.202000228RR.

    Article  PubMed  Google Scholar 

  155. Lacasa D, Taleb S, Keophiphath M, Miranville A, Clement K. Macrophage-secreted factors impair human adipogenesis: involvement of proinflammatory state in preadipocytes. Endocrinol. 2007;148(2):868–77. https://doi.org/10.1210/en.2006-0687.

    Article  CAS  Google Scholar 

  156. Keophiphath M, Achard V, Henegar C, Rouault C, Clement K, Lacasa D. Macrophage-secreted factors promote a profibrotic phenotype in human preadipocytes. Mol Endocrinol. 2009;23(1):11–24. https://doi.org/10.1210/me.2008-0183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ferrante AW. The immune cells in adipose tissue. Diabetes Obes Metab. 2013;15(0 3):34–8. https://doi.org/10.1111/dom.12154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Elgazar-Carmon V, Rudich A, Hadad N, Levy R. Neutrophils transiently infiltrate intra-abdominal fat early in the course of high-fat feeding. J Lipid Res. 2008;49(9). https://doi.org/10.1194/jlr.M800132-JLR200.

  159. Talukdar S, Oh DY, Bandyopadhyay G, Li D, Xu J, McNelis J, et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nature Med. 2012;18(9). https://doi.org/10.1038/nm.2885.

  160. Xia S, Sha H, Yang L, Ji Y, Ostrand-Rosenberg S, Qi L. Gr-1 + CD11b + myeloid-derived suppressor cells suppress inflammation and promote insulin sensitivity in obesity. J Biol Chem. 2011;286(26):23591–9. https://doi.org/10.1074/jbc.M111.237123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kado T, Nawaz A, Takikawa A, Usui I, Tobe K. Linkage of CD8(+) T cell exhaustion with high-fat diet-induced tumourigenesis. Sci Rep. 2019;9(1):12284. https://doi.org/10.1038/s41598-019-48678-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Reynolds CM, McGillicuddy FC, Harford KA, Finucane OM, Mills KH, Roche HM. Dietary saturated fatty acids prime the NLRP3 inflammasome via TLR4 in dendritic cells-implications for diet-induced insulin resistance. Mol Nutr Food Res. 2012;56(8):1212–22. https://doi.org/10.1002/mnfr.201200058.

    Article  CAS  PubMed  Google Scholar 

  163. Bertola A, Ciucci T, Rousseau D, Bourlier V, Duffaut C, Bonnafous S, et al. Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients. Diabetes. 2012;61(9):2238–47. https://doi.org/10.2337/db11-1274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Stefanovic-Racic M, Yang X, Turner MS, Mantell BS, Stolz DB, Sumpter TL, et al. Dendritic cells promote macrophage infiltration and comprise a substantial proportion of obesity-associated increases in CD11c + cells in adipose tissue and liver. Diabetes. 2012;61(9):2330–9. https://doi.org/10.2337/db11-1523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Cho KW, Zamarron BF, Muir LA, Singer K, Porsche CE, DelProposto JB, et al. Adipose tissue dendritic cells are independent contributors to obesity-induced inflammation and insulin resistance. J Immunol. 2016;197(9):3650–61. https://doi.org/10.4049/jimmunol.1600820.

    Article  CAS  PubMed  Google Scholar 

  166. Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A, et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med. 2009;15(8):930–9. https://doi.org/10.1038/nm.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, et al. CD8 + effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med. 2009;15(8):914–20. https://doi.org/10.1038/nm.1964.

    Article  CAS  PubMed  Google Scholar 

  168. Yang H, Youm YH, Vandanmagsar B, Ravussin A, Gimble JM, Greenway F, et al. Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance. J Immunol. 2010;185(3):1836–45. https://doi.org/10.4049/jimmunol.1000021.

    Article  CAS  PubMed  Google Scholar 

  169. Rausch ME, Weisberg S, Vardhana P, Tortoriello DV. Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. Int J Obes. 2008;32(3):451–63. https://doi.org/10.1038/sj.ijo.0803744.

    Article  CAS  Google Scholar 

  170. Zhang C, Yue C, Herrmann A, Song J, Egelston C, Wang T, et al. STAT3 activation-induced fatty acid oxidation in CD8(+) T effector cells is critical for obesity-promoted breast tumor growth. Cell Metab. 2020;31(1):148 – 61.e5. https://doi.org/10.1016/j.cmet.2019.10.013.

    Article  CAS  PubMed  Google Scholar 

  171. Zeyda M, Huber J, Prager G, Stulnig TM. Inflammation correlates with markers of T-cell subsets including regulatory T cells in adipose tissue from obese patients. Obesity. 2011;19(4). https://doi.org/10.1038/oby.2010.123.

  172. Travers RL, Motta AC, Betts JA, Bouloumié A, Thompson D. The impact of adiposity on adipose tissue-resident lymphocyte activation in humans. Int J Obesity. 2015;39(5). https://doi.org/10.1038/ijo.2014.195.

  173. Duffaut C, Zakaroff-Girard A, Bourlier V, Decaunes P, Maumus M, Chiotasso P, et al. Interplay between human adipocytes and T lymphocytes in obesity: CCL20 as an adipochemokine and T lymphocytes as lipogenic modulators. Arterioscler Thromb Vasc Biol. 2009;29(10). https://doi.org/10.1161/ATVBAHA.109.192583.

  174. Adhikary S, Hoskin TL, Stallings-Mann ML, Arshad M, Frost MH, Winham SJ, et al. Cytotoxic T cell depletion with increasing epithelial abnormality in women with benign breast disease. Breast Cancer Res Treat. 2020;180(1):55–61. https://doi.org/10.1007/s10549-019-05493-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Brahimi-Horn MC, Pouyssegur J. Oxygen, a source of life and stress. FEBS Lett. 2007;581(19):3582–91. https://doi.org/10.1016/j.febslet.2007.06.018.

    Article  CAS  PubMed  Google Scholar 

  176. Pasarica M, Sereda OR, Redman LM, Albarado DC, Hymel DT, Roan LE, et al. Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes. 2009;58(3):718–25. https://doi.org/10.2337/db08-1098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Spencer M, Unal R, Zhu B, Rasouli N, McGehee RE Jr, Peterson CA, et al. Adipose tissue extracellular matrix and vascular abnormalities in obesity and insulin resistance. J Clin Endocrinol Metab. 2011;96(12):E1990-8. https://doi.org/10.1210/jc.2011-1567.

    Article  CAS  PubMed  Google Scholar 

  178. Blaak EE, van Baak MA, Kemerink GJ, Pakbiers MT, Heidendal GA, Saris WH. Beta-adrenergic stimulation and abdominal subcutaneous fat blood flow in lean, obese, and reduced-obese subjects. Metabolism. 1995;44(2):183–7. https://doi.org/10.1016/0026-0495(95)90262-7.

    Article  CAS  PubMed  Google Scholar 

  179. Kabon B, Nagele A, Reddy D, Eagon C, Fleshman JW, Sessler DI, et al. Obesity decreases perioperative tissue oxygenation. Anesthesiology. 2004;100(2):274–80. https://doi.org/10.1097/00000542-200402000-00015.

    Article  PubMed  Google Scholar 

  180. Virtanen KA, Lonnroth P, Parkkola R, Peltoniemi P, Asola M, Viljanen T, et al. Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin stimulation in nonobese and obese humans. J Clin Endocrinol Metab. 2002;87(8):3902–10. https://doi.org/10.1210/jcem.87.8.8761.

    Article  CAS  PubMed  Google Scholar 

  181. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721–32. https://doi.org/10.1038/nrc1187.

    Article  CAS  PubMed  Google Scholar 

  182. Trayhurn P, Wang B, Wood IS. Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity? Br J Nutr. 2008;100(2):227–35. https://doi.org/10.1017/s0007114508971282.

    Article  CAS  PubMed  Google Scholar 

  183. Nishimura S, Manabe I, Nagasaki M, Hosoya Y, Yamashita H, Fujita H, et al. Adipogenesis in obesity requires close interplay between differentiating adipocytes, stromal cells, and blood vessels. Diabetes. 2007;56(6):1517–26. https://doi.org/10.2337/db06-1749.

    Article  CAS  PubMed  Google Scholar 

  184. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9(6):677–84. https://doi.org/10.1038/nm0603-677.

    Article  CAS  PubMed  Google Scholar 

  185. Sartipy P, Loskutoff DJ. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci U S A. 2003;100(12):7265–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86(3):353–64.

    Article  CAS  PubMed  Google Scholar 

  187. Nyberg P, Xie L, Kalluri R. Endogenous inhibitors of angiogenesis. Cancer Res. 2005;65(10):3967–79. https://doi.org/10.1158/0008-5472.can-04-2427.

    Article  CAS  PubMed  Google Scholar 

  188. Cao Y. Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat Rev Drug Discov. 2010;9(2):107–15.

    Article  CAS  PubMed  Google Scholar 

  189. Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109(10):1292–8. https://doi.org/10.1161/01.cir.0000121425.42966.f1.

    Article  PubMed  Google Scholar 

  190. Bougaret L, Delort L, Billard H, Lequeux C, Goncalves-Mendes N, Mojallal A, et al. Supernatants of adipocytes from obese versus normal weight women and breast cancer cells: in vitro impact on angiogenesis. J Cell Physiol. 2017;232(7):1808–16. https://doi.org/10.1002/jcp.25701.

    Article  CAS  PubMed  Google Scholar 

  191. Cao R, Brakenhielm E, Wahlestedt C, Thyberg J, Cao Y. Leptin induces vascular permeability and synergistically stimulates angiogenesis with FGF-2 and VEGF. Proc Natl Acad Sci U S A. 2001;98(11):6390–5. https://doi.org/10.1073/pnas.101564798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Sierra-Honigmann MR, Nath AK, Murakami C, Garcia-Cardena G, Papapetropoulos A, Sessa WC, et al. Biological action of leptin as an angiogenic factor. Science. 1998;281(5383):1683–6. https://doi.org/10.1126/science.281.5383.1683.

    Article  CAS  PubMed  Google Scholar 

  193. Adya R, Tan BK, Randeva HS. Differential effects of leptin and adiponectin in endothelial angiogenesis. J Diabetes Res. 2015;2015:648239. https://doi.org/10.1155/2015/648239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Xie G, Swiderska-Syn M, Jewell ML, Machado MV, Michelotti GA, Premont RT, et al. Loss of pericyte smoothened activity in mice with genetic deficiency of leptin. BMC Cell Biol. 2017;18(1):20. https://doi.org/10.1186/s12860-017-0135-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kolb R, Kluz P, Tan ZW, Borcherding N, Bormann N, Vishwakarma A, et al. Obesity-associated inflammation promotes angiogenesis and breast cancer via angiopoietin-like 4. Oncogene. 2019;38(13):2351–63. https://doi.org/10.1038/s41388-018-0592-6.

    Article  CAS  PubMed  Google Scholar 

  196. Gealekman O, Burkart A, Chouinard M, Nicoloro SM, Straubhaar J, Corvera S. Enhanced angiogenesis in obesity and in response to PPARγ activators through adipocyte VEGF and ANGPTL4 production. Am J Physiol Endocrinol Metab. 2008;295(5):E1056-64. https://doi.org/10.1152/ajpendo.90345.2008.

    Article  CAS  PubMed  Google Scholar 

  197. Dobson DE, Kambe A, Block E, Dion T, Lu H, Castellot JJ Jr, et al. 1-Butyryl-glycerol: a novel angiogenesis factor secreted by differentiating adipocytes. Cell. 1990;61(2):223–30. https://doi.org/10.1016/0092-8674(90)90803-m.

    Article  CAS  PubMed  Google Scholar 

  198. McTiernan A. Weight, physical activity and breast cancer survival. Proc Nutr Soc. 2018:1–9. https://doi.org/10.1017/s0029665118000010.

  199. Byers T, Sedjo RL. Does intentional weight loss reduce cancer risk? Diabetes Obes Metab. 2011;13(12):1063–72. https://doi.org/10.1111/j.1463-1326.2011.01464.x.

    Article  CAS  PubMed  Google Scholar 

  200. Sjöström L, Gummesson A, Sjöström CD, Narbro K, Peltonen M, Wedel H, et al. Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): a prospective, controlled intervention trial. Lancet Oncol. 2009;10(7):653–62. https://doi.org/10.1016/s1470-2045(09)70159-7.

    Article  PubMed  Google Scholar 

  201. Dixon JB, O’Brien PE, Playfair J, Chapman L, Schachter LM, Skinner S, et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA. 2008;299(3):316–23. https://doi.org/10.1001/jama.299.3.316.

    Article  CAS  PubMed  Google Scholar 

  202. Winder AA, Kularatna M, MacCormick AD. Does bariatric surgery affect the incidence of breast cancer development? A systematic review. Obes Surg. 2017;27(11):3014–20. https://doi.org/10.1007/s11695-017-2901-5.

    Article  PubMed  Google Scholar 

  203. Feigelson HS, Caan B, Weinmann S, Leonard AC, Powers JD, Yenumula PR, et al. Bariatric surgery is associated with reduced risk of breast cancer in both premenopausal and postmenopausal women. Ann Surg. 2019. https://doi.org/10.1097/sla.0000000000003331.

    Article  PubMed  Google Scholar 

  204. Heshmati K, Harris DA, Rosner B, Pranckevicius E, Ardestani A, Cho N, et al. Association of bariatric surgery status with reduced HER2 + breast cancers: a retrospective cohort study. Obes Surg. 2019;29(4):1092–8. https://doi.org/10.1007/s11695-018-03701-7.

    Article  PubMed  Google Scholar 

  205. Hassinger TE, Mehaffey JH, Hawkins RB, Schirmer BD, Hallowell PT, Schroen AT, et al. Overall and estrogen receptor-positive breast cancer incidences are decreased following bariatric surgery. Obes Surg. 2019;29(3):776–81. https://doi.org/10.1007/s11695-018-3598-9.

    Article  PubMed  Google Scholar 

  206. Rossi EL, de Angel RE, Bowers LW, Khatib SA, Smith LA, Van Buren E, et al. Obesity-associated alterations in inflammation, epigenetics, and mammary tumor growth persist in formerly obese mice. Cancer Prev Res. 2016;9(5):339–48. https://doi.org/10.1158/1940-6207.capr-15-0348.

    Article  CAS  Google Scholar 

  207. Bhardwaj P, Du B, Zhou XK, Sue E, Harbus MD, Falcone DJ, et al. Caloric restriction reverses obesity-induced mammary gland inflammation in mice. Cancer Prev Res. 2013;6(4):282–9. https://doi.org/10.1158/1940-6207.CAPR-12-0467.

    Article  CAS  Google Scholar 

  208. Cancello R, Henegar C, Viguerie N, Taleb S, Poitou C, Rouault C, et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes. 2005;54(8):2277–86. https://doi.org/10.2337/diabetes.54.8.2277.

    Article  CAS  PubMed  Google Scholar 

  209. Kovacikova M, Sengenes C, Kovacova Z, Siklova-Vitkova M, Klimcakova E, Polak J, et al. Dietary intervention-induced weight loss decreases macrophage content in adipose tissue of obese women. Int J Obes. 2011;35(1):91–8. https://doi.org/10.1038/ijo.2010.112.

    Article  CAS  Google Scholar 

  210. Silva KR, Liechocki S, Carneiro JR, Claudio-da-Silva C, Maya-Monteiro CM, Borojevic R, et al. Stromal-vascular fraction content and adipose stem cell behavior are altered in morbid obese and post bariatric surgery ex-obese women. Stem Cell Res Ther. 2015;6:72. https://doi.org/10.1186/s13287-015-0029-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Clement K, Viguerie N, Poitou C, Carette C, Pelloux V, Curat CA, et al. Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects. FASEB J. 2004;18(14):1657–69. https://doi.org/10.1096/fj.04-2204com.

    Article  CAS  PubMed  Google Scholar 

  212. Aron-Wisnewsky J, Tordjman J, Poitou C, Darakhshan F, Hugol D, Basdevant A, et al. Human adipose tissue macrophages: m1 and m2 cell surface markers in subcutaneous and omental depots and after weight loss. J Clin Endocrinol Metab. 2009;94(11):4619–23. https://doi.org/10.1210/jc.2009-0925.

    Article  CAS  PubMed  Google Scholar 

  213. Mitterberger MC, Mattesich M, Zwerschke W. Bariatric surgery and diet-induced long-term caloric restriction protect subcutaneous adipose-derived stromal/progenitor cells and prolong their life span in formerly obese humans. Exp Gerontol. 2014;56:106–13. https://doi.org/10.1016/j.exger.2014.03.030.

    Article  PubMed  Google Scholar 

  214. Rossmeislova L, Malisova L, Kracmerova J, Tencerova M, Kovacova Z, Koc M, et al. Weight loss improves the adipogenic capacity of human preadipocytes and modulates their secretory profile. Diabetes. 2013;62(6):1990–5. https://doi.org/10.2337/db12-0986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Kolehmainen M, Salopuro T, Schwab US, Kekalainen J, Kallio P, Laaksonen DE, et al. Weight reduction modulates expression of genes involved in extracellular matrix and cell death: the GENOBIN study. Int J Obes. 2008;32(2):292–303. https://doi.org/10.1038/sj.ijo.0803718.

    Article  CAS  Google Scholar 

  216. Divoux A, Tordjman J, Lacasa D, Veyrie N, Hugol D, Aissat A, et al. Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes. 2010;59(11):2817–25. https://doi.org/10.2337/db10-0585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Liu Y, Aron-Wisnewsky J, Marcelin G, Genser L, Le Naour G, Torcivia A, et al. Accumulation and changes in composition of collagens in subcutaneous adipose tissue after bariatric surgery. J Clin Endocrinol Metab. 2016;101(1):293–304. https://doi.org/10.1210/jc.2015-3348.

    Article  CAS  PubMed  Google Scholar 

  218. Abdennour M, Reggio S, Le Naour G, Liu Y, Poitou C, Aron-Wisnewsky J, et al. Association of adipose tissue and liver fibrosis with tissue stiffness in morbid obesity: links with diabetes and BMI loss after gastric bypass. J Clin Endocrinol Metab. 2014;99(3):898–907. https://doi.org/10.1210/jc.2013-3253.

    Article  CAS  PubMed  Google Scholar 

  219. Lambertz IU, Luo L, Berton TR, Schwartz SL, Hursting SD, Conti CJ, et al. Early exposure to a high fat/high sugar diet increases the mammary stem cell compartment and mammary tumor risk in female mice. Cancer Prev Res. 2017;10(10):553–62. https://doi.org/10.1158/1940-6207.Capr-17-0131.

    Article  CAS  Google Scholar 

  220. Phipps AI, Buist DS, Malone KE, Barlow WE, Porter PL, Kerlikowske K, et al. Breast density, body mass index, and risk of tumor marker-defined subtypes of breast cancer. Ann Epidemiol. 2012;22(5):340–8. https://doi.org/10.1016/j.annepidem.2012.02.002.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Phipps AI, Malone KE, Porter PL, Daling JR, Li CI. Body size and risk of luminal, HER2-overexpressing, and triple-negative breast cancer in postmenopausal women. Cancer Epidemiol Biomarkers Prev. 2008;17(8):2078–86. https://doi.org/10.1158/1055-9965.EPI-08-0206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Terry MB, Michels KB, Brody JG, Byrne C, Chen S, Jerry DJ, et al. Environmental exposures during windows of susceptibility for breast cancer: a framework for prevention research. Breast Cancer Res. 2019;21(1):96. https://doi.org/10.1186/s13058-019-1168-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Shieh Y, Scott CG, Jensen MR, Norman AD, Bertrand KA, Pankratz VS, et al. Body mass index, mammographic density, and breast cancer risk by estrogen receptor subtype. Breast Cancer Res. 2019;21(1):48. https://doi.org/10.1186/s13058-019-1129-9.

    Article  PubMed  PubMed Central  Google Scholar 

  224. Engmann NJ, Scott CG, Jensen MR, Winham S, Miglioretti DL, Ma L, et al. Combined effect of volumetric breast density and body mass index on breast cancer risk. Breast Cancer Res Treat. 2019;177(1):165–73. https://doi.org/10.1007/s10549-019-05283-z.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Huo CW, Chew G, Hill P, Huang D, Ingman W, Hodson L, et al. High mammographic density is associated with an increase in stromal collagen and immune cells within the mammary epithelium. Breast Cancer Res. 2015;17:79. https://doi.org/10.1186/s13058-015-0592-1.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Abbey Williams, Brenna Walton, and Genevra Kuziel for helpful discussions and suggestions.

Funding

This work was supported by National Institutes of Health R01 CA227542 (L.M.A.) and T32 GM007215 (L.E.H.).

Author information

Authors and Affiliations

Authors

Contributions

LEH drafted the manuscript and generated the figures. LEH and LMA revised the manuscript.

Corresponding author

Correspondence to Lisa M. Arendt.

Ethics declarations

Conflicts of Interest

The authors have no conflicts of interests to report.

Code Availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hillers-Ziemer, L.E., Arendt, L.M. Weighing the Risk: effects of Obesity on the Mammary Gland and Breast Cancer Risk. J Mammary Gland Biol Neoplasia 25, 115–131 (2020). https://doi.org/10.1007/s10911-020-09452-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-020-09452-5

Keywords

Navigation