Skip to main content
Log in

Computational properties of the arithmetic–geometric index

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The concept of arithmetic–geometric index was introduced in the chemical graph theory recently, but it has shown to be useful. We obtain in this paper new lower bounds of the arithmetic–geometric index and we characterize graphs extremal with respect to them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. H. Wiener, Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947)

    Article  CAS  PubMed  Google Scholar 

  2. I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. total \(\pi \)-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17, 535–538 (1972)

    Article  CAS  Google Scholar 

  3. I. Gutman, Degree-based topological indices. Croat. Chem. Acta 86, 351–361 (2013)

    Article  CAS  Google Scholar 

  4. I. Gutman, K.C. Das, The first zagreb index 30 years after. MATCH Commun. Math. Comput. Chem 50, 83–92 (2004)

    CAS  Google Scholar 

  5. I. Gutman, T. Réti, Zagreb group indices and beyond. Int. J. Chem. Model. 6, 191–200 (2014)

    Google Scholar 

  6. X. Li, J. Zheng, A unified approach to the extremal trees for different indices. MATCH Commun. Math. Comput. Chem 54, 195–208 (2005)

    CAS  Google Scholar 

  7. X. Li, H. Zhao, Trees with the first smallest and largest generalized topological indices. MATCH Commun. Math. Comput. Chem 50, 57–62 (2004)

    Google Scholar 

  8. A. Miličević, S. Nikolić, On variable zagreb indices. Croat. Chem. Acta 77, 97–101 (2004)

    Google Scholar 

  9. M. Randić, Novel graph theoretical approach to heteroatoms in QSAR. Chemom. Intel. Lab. Syst. 10, 213–227 (1991)

    Article  Google Scholar 

  10. M. Randić, On computation of optimal parameters for multivariate analysis of structure-property relationship. J. Chem. Inf. Comput. Sci. 31, 970–980 (1991)

    Article  Google Scholar 

  11. M. Randić, D. Plavšić, N. Lerš, Variable connectivity index for cycle-containing structures. J. Chem. Inf. Comput. Sci. 41, 657–662 (2001)

    Article  PubMed  CAS  Google Scholar 

  12. I. Gutman, J. Tošović, Testing the quality of molecular structure descriptors. Vertex–degree based topological indices. J. Serb. Chem. Soc. 78(6), 805–810 (2013)

    Article  CAS  Google Scholar 

  13. S. Nikolić, A. Miličević, N. Trinajstić, A. Jurić, On use of the variable zagreb \(^{\nu } m_2\) index in QSPR: boiling points of benzenoid hydrocarbons. Molecules. 9, 1208–1221 (2004)

    PubMed  PubMed Central  Google Scholar 

  14. M. Drmota, Random Trees An Interplay Between Combinatorics and Probability (Springer, New York, 2009)

    Google Scholar 

  15. V. Andova, M. Petrusevski, Variable zagreb indices and karamata’s inequality. MATCH Commun. Math. Comput. Chem 65, 685–690 (2011)

    Google Scholar 

  16. M. Liu, B. Liu, Some properties of the first general zagreb index. Aust. J. Combin 47, 285–294 (2010)

    Google Scholar 

  17. M. Singh, K.C. Das, S. Gupta, A.K. Madan, Refined variable zagreb indices: highly discriminating topological descriptors for QSAR/QSPR. Int. J. Chem. Modeling 6(2–3), 403–428 (2014)

    Google Scholar 

  18. S. Zhang, W. Wang, E. Cheng, Bicyclic graphs with the first three smallest and largest values of the first general zagreb index. MATCH Commun. Math. Comput. Chem. 56(3), 579–592 (2006)

    CAS  Google Scholar 

  19. S. Zhang, H. Zhang, Unicyclic graphs with the first three smallest and largest first general zagreb index. MATCH - Commun. Math. Comput. Chem. 55, 6 (2006)

    Google Scholar 

  20. B. Zhou, N. Trinajstić, On general sum-connectivity index. J. Math. Chem. 47(1), 210–218 (2009). https://doi.org/10.1007/s10910-009-9542-4

    Article  CAS  Google Scholar 

  21. D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges. J. Math. Chem. 46(4), 1369–1376 (2009). https://doi.org/10.1007/s10910-009-9520-x

    Article  CAS  Google Scholar 

  22. K. Das, On geometric-arithmetic index of graphs. MATCH Commun. Math. Comput. Chem 64, 619–630 (2010)

    Google Scholar 

  23. K.C. Das, I. Gutman, B. Furtula, Survey on geometric-arithmetic indices of graphs. MATCH Commun. Math. Comput. Chem 65, 595–644 (2011)

    CAS  Google Scholar 

  24. K.C. Das, I. Gutman, B. Furtula, On first geometric-arithmetic index of graphs. Discret. Appl. Math. 159, 2030–2037 (2011)

    Article  Google Scholar 

  25. A. Martínez-Pérez, J.M. Rodríguez, J.M. Sigarreta, A new approximation to the geometric-arithmetic index. J. Math. Chem. 56(7), 1865–1883 (2018)

    Article  CAS  Google Scholar 

  26. M. Mogharrab, G.H. Fath-Tabar, Some bounds on \(ga_1\) index of graphs. MATCH Commun. Math. Comput. Chem 65, 33–38 (2010)

    Google Scholar 

  27. J.M. Rodríguez, J.M. Sigarreta, On the geometric-arithmetic index. MATCH Commun. Math. Comput. Chem 74, 103–120 (2015)

    Google Scholar 

  28. J.M. Rodríguez, J.M. Sigarreta, Spectral properties of geometric-arithmetic index. Appl. Math. Comput. 277, 142–153 (2016)

    Google Scholar 

  29. J.M. Sigarreta, Bounds for the geometric-arithmetic index of a graph. Miskolc Math. Notes 16(2), 1199–1212 (2015). https://doi.org/10.18514/mmn.2015.1423

    Article  Google Scholar 

  30. M. Vöge, A.J. Guttmann, I. Jensen, On the number of benzenoid hydrocarbons. J. Chem. Inf. Comput. Sci. 42(3), 456–466 (2002). https://doi.org/10.1021/ci010098g

    Article  CAS  PubMed  Google Scholar 

  31. V. Shegehall, R. Kanabur, Arithmetic-geometric indices of path graph. J. Math. Comput. Sci 16, 19–24 (2015)

    Google Scholar 

  32. V. Shegehall, R. Kanabur, Arithmetic-geometric indices of graphs with pendant vertices attached to the middle vertices of path. J. Math. Comput. Sci 6, 67–72 (2015)

    Google Scholar 

  33. V.S. Shigehalli, R. Kanabur, Computation of new degree-based topological indices of graphene. J. Math. 2016, 1–6 (2016). https://doi.org/10.1155/2016/4341919

    Article  Google Scholar 

  34. L. Zheng, G.-X. Tian, S.-Y. Cui, On spectral radius and energy of arithmetic-geometric matrix of graphs. MATCH Commun. Math. Comput. Chem 83, 635–650 (2020)

    Google Scholar 

  35. X. Guo, Y. Gao, Arithmetic-geometric spectral radius and energy of graphs. MACTH Commun. Math. Comput. Chem 83, 651–660 (2020)

    Google Scholar 

  36. K.C. Das, I. Gutman, Degree-based energies of graphs. Linear Algebra Appl. 554, 185–204 (2018)

    Article  Google Scholar 

  37. S. Vujošević, G. Popivoda, ŽK. Vukićević, B. Furtula, R. Škrekovski, Arithmetic–geometric index and its relations with geometric–arithmetic index. Appl. Math. Comput. 391, 125706 (2021). https://doi.org/10.1016/j.amc.2020.125706

    Article  Google Scholar 

  38. S.-Y. Cui, W. Wang, G.-X. Tian, B. Wu, On the arithmetic-geometric index of graphs. Preprint (2021)

  39. I.V. Milovanović, M. Matejić, E.I. Milovanović, Milovanovi’c, upper bounds for arithmetic-geometric index of graphs. Sci. Publ. State Univ. Novi Pazar Ser A Appl. Math. Infor. Mech 10(1), 49–54 (2018)

    Article  Google Scholar 

  40. E. Molina, J.M. Rodríguez, J.L. Sánchez, J.M. Sigarreta, Some properties of the arithmetic-geometric index. Symmetry 13(5), 857 (2021)

    Article  Google Scholar 

  41. J.M. Rodríguez, J.L. Sánchez, J.M. Sigarreta, E. Tourís, Bounds on the arithmetic-geometric index. Symmetry 13(4), 689 (2021)

    Article  CAS  Google Scholar 

  42. I. Milovanović, E. Milovanović, M. Matejić, On upper bounds for the geometric-arithmetic topological index. MATCH Commun. Math. Comput. Chem 80, 109–127 (2018)

    Google Scholar 

  43. M. Eliasi, A. Iranmanesh, On ordinary generalized geometric-arithmetic index. Appl. Math. Lett. 24, 582–587 (2011)

    Article  Google Scholar 

  44. R. Aguilar-Sánchez, I.F. Herrera-González, J.A. Méndez-Bermúdez, J.M. Sigarreta, Computational properties of general indices on random networks. Symmetry 12(8), 1341 (2020). https://doi.org/10.3390/sym12081341

    Article  Google Scholar 

  45. D. Vukičević, M. Gašperov, Bond additive modeling 1. Adriatic indices. Croat. Chem. Acta 83, 243–260 (2010)

    Google Scholar 

  46. J. Szökefalvi Nagy, Uber algebraische gleichungen mit lauter reellenwurzeln. Jahresbericht der Deutschen mathematiker -Vereingung 27, 37–43 (1918)

    Google Scholar 

  47. R. Sharma, M. Gupta, G. Kopor, Some better bounds on the variance with applications. J. Math. Inequal. 4(3), 355–367 (2010)

    Article  Google Scholar 

  48. D. Vukičević, Bond additive modeling 2. Mathematical properties of max-min rodeg index. Croat. Chem. Acta 83, 261–273 (2010)

    Google Scholar 

  49. B. Furtula, K. Das, I. Gutman, Comparative analysis of symmetric division deg index as potentially useful molecular descriptor. Int. J. Quantum Chem. 118, 25659 (2018)

    Article  CAS  Google Scholar 

  50. D. Andrica, C. Badea, Grüss inequality for positive linear functionals. Period. Math. Hung. 19, 155–167 (1988)

    Article  Google Scholar 

  51. H. Kober, On the arithmetic and geometric means and on hölder’s inequality. Proc. Am. Math. Soc. 9, 452–459 (1958)

    Google Scholar 

  52. B. Zhou, T. Aleksic, I. Gutman, On Laplacian energy of graphs. MATCH. Commun. Math. Comput. Chem. 60, 441–446 (2008)

    CAS  Google Scholar 

  53. R. Todeschini, V. Consonni, New local vertex invariants and molecular descriptors based on functions of the vertex degrees. MATCH Commun. Math. Comput. Chem. 64(2), 359–372 (2010)

    CAS  Google Scholar 

  54. M. Eliasi, A. Iranmanesh, I. Gutman, Multiplicative versions of first zagreb index. MATCH Commun. Math. Comput. Chem 68(1), 217–230 (2012)

    Google Scholar 

  55. S. Hafeez, R. Farooq, On generalized inverse sum indeg index and energy of graphs. AIMS Math. 5, 2388–2411 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

W. Carballosa, A. Granados, D. Pestana and A. Portilla are supported by a grant from Agencia Estatal de Investigación (PID2019-106433GB-I00 / AEI / 10.13039/501100011033), Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Portilla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carballosa, W., Granados, A., Méndez Bermúdez, J.A. et al. Computational properties of the arithmetic–geometric index. J Math Chem 60, 1854–1871 (2022). https://doi.org/10.1007/s10910-022-01390-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-022-01390-3

Keywords

Navigation