Skip to main content
Log in

The inertia and energy gap of a vertex-decorated graph with identically weighted ‘internal’ edges and beyond

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Let \(G=(V, E)\) be an undirected graph with the vertex set V and the edge set E \((|V|=n, |E|=m)\). The spectrum of eigenvalues of G is the (multi)set of all eigenvalues \(\lambda _{j}\) \((\lambda _{1}\ge \lambda _{2}\ge \cdots \ge \lambda _{n})\) of its adjacency matrix \(A=[a_{jk}]_{j,k=1}^{n}\). The inertia (set or indices) of the matrix A (graph G) is the triple \(\{n_{+}, n_{-}, n_{0}\}\), where \(n_{+}, n_{-}, n_{0}\) are the numbers of positive, negative, and zero eigenvalues of A (G), respectively. Let \(d_{1}, d_{2}, \ldots , d_{n}\) be a vertex degree sequence of G, and let \({\mathcal {H}}=\{H_{1}, H_{2}, \ldots , H_{n}\}\) be a (multi)set of connected undirected graphs with \(|V(H_{j})|=d_{j}\) \((j\in \{1, 2, \ldots , n\})\). We consider the complete vertex decoration \(G({\mathcal {H}})\) of G using the graphs \(H_{j}\), when each vertex \(v_{j}\) of G is decorated (replaced) by the respective graph \(H_{j}\) with the vertex set \(\{u_{1}, u_{2}, \ldots , u_{d_{j}}\}\). In the vertex-decorated graph \(G({\mathcal {H}})\), each vertex \(u_{j}\) of \(H_{j}\) serves as a new \(v_{j}\)-end vertex for the former edge \(v_{j}v_{k}\) of G. Considering an edge as a pair of opposite arcs with common endpoints, we determine how the inertia and energy gap of \(G({\mathcal {H}})\) depend on the attachment of the same weight w to all arcs of the \({\mathcal {H}}\)-edges of \(G({\mathcal {H}})\). Some further generalizations and possible links to problems in chemistry are also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D.M. Cvetković, M. Doob, H. Sachs, Spectra of Graph—Theory and Application (VEB Deutscher Verlag der Wissenschaften, Berlin, 1980 (Academic Press, New York, San Francisco, London, Also, 1980)

    Google Scholar 

  2. D. Hershkowitz, Matrix stability and inertia, Ch. 19, in Handbook of Linear Algebra. ed. by K.H. Rosen (Chapman & Hall/CRC, Taylor & Francis Group, Boca Raton, 2007)

    Google Scholar 

  3. R.A. Horn, C.R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1985, 2013)

  4. C.A. Coulson, G.S. Rushbrooke, Note on the method of molecular orbitals. Proc. Camb. Philos. Soc. 36, 193–200 (1940)

    Article  CAS  Google Scholar 

  5. J.R. Dias, Molecular Orbital Calculations Using Chemical Graph Theory (Springer, Berlin, Heidelberg, 1993)

    Book  Google Scholar 

  6. A. Tang, Y. Kiang, G. Yan, S. Tai, Graph Theoretical Molecular Orbitals (Science Press, Beijing, 1986)

    Google Scholar 

  7. L. Lovász, M.D. Plummer, Matching Theory (American Mathematical Society, Providence, Rhode Island, 2009. First edition: Elsevier Science Publishers B.V., Amsterdam, and Akadémiai Kiadó, Budapest, 1986; (Russian translation: Mir, Moscow, 1998)

  8. D.J. Klein, C.E. Larson, Eigenvalues of saturated hydrocarbons. J. Math. Chem. 51(6), 1608–1618 (2013)

    Article  CAS  Google Scholar 

  9. V.R. Rosenfeld, The spectrum of the vertex quadrangulation of a 4-regular toroidal graph and beyond. J. Math. Chem. 59(6), 1551–1569 (2021)

    Article  CAS  Google Scholar 

  10. V.R. Rosenfeld, Y. Yang, Close-to-zero eigenvalues of the rooted product of graphs. J. Math. Chem. 59(6), 1526–1535 (2021)

    Article  CAS  Google Scholar 

  11. M.V. Diudea, V.R. Rosenfeld, The truncation of a cage graph. J. Math. Chem. 55(4), 1014–1020 (2017)

    Article  CAS  Google Scholar 

  12. S. Samson, Structural principles of giant cells, in Developments in the Structural Chemistry of Alloy Phases. ed. by B.C. Giessen (Springer, New York, 1969), pp. 65–106

    Chapter  Google Scholar 

  13. Y. Zheng, Q.-C. Zhang, L.-S. Long, R.-B. Huang, A. Müller, J. Schnak, L.-S. Zheng, Z. Zheng, Molybdate templated assembly of \({\rm Ln}_{12}{\rm Mo}_{4}{-type cluster ({\rm Ln=Sm, Eu, Cd}})\) containing a truncated tetrahedron core. Chem. Commun. 49, 36–38 (2013)

    Article  CAS  Google Scholar 

  14. S. Ishikawa, T. Yamabe, Theoretical study of hydrogen storage in a truncated tetrahedron hydrocarbon. Appl. Phys. A 123, Article number: 119 (2017)

  15. S. Ishikawa, T. Nemoto, T. Yamade, Theoretical study of hydrogen storage in a truncated triangular pyramid molecule consisting of pyridine and benzene rings bridged by vinylene groups. Appl. Phys. A 124, 418 (2018)

    Article  Google Scholar 

  16. A. Nemirowski, H.P. Reisenauer, P.R. Schreiner, Tetrahedrane—Dossier of an unknown. Chem. Eur. J. 12(28), 7411–7420 (2006)

    Article  CAS  Google Scholar 

  17. Tetrahedrane. Wikipedia. https://en.wikipedia.org/wiki/Tetrahedrane. 11 Aug 2021

  18. F. Pan, L. Guggolz, S. Dehnen, Cluster chemistry with (pseudo-)tetrahedra involving group 13–15 (semi-)metal atoms. CCS Chem. 3, 2969–2984 (2021)

    Article  Google Scholar 

  19. G. Maier, S. Pfriem, U. Schäfer, R. Matusch, Tetra-tert-butyltetrahedrane. Angew. Chem. Int. Ed. Engl. 17(7), 520–521 (1978)

    Article  Google Scholar 

  20. M. Nakamoto, Y. Inagaki, T. Ochiai, M. Tanaka, A. Sekiguchi, Cyclobutadiene to tetrahedrane: valence isomerization induced by one-electron oxidation. Heteroatom. Chem. 22(3–4), 412–416 (2011)

    Article  CAS  Google Scholar 

  21. F. Spitzer, M. Sierka, M. Latronico, P. Mastrorilli, A.V. Virovets, M. Scheer, Fixation and release of intact \({\rm E}_{4}\) tetrahedra (E = P, As). Angew. Chem. Int. Ed. 54(14), 4392–4396 (2015)

    Article  CAS  Google Scholar 

  22. M. Seidl, G. Balázs, M. Scheer, The chemistry of yellow arsenic. Chem. Rev. 119(14), 8406–8434 (2019)

    Article  CAS  Google Scholar 

  23. L. Giusti, V.R. Landaeta, M. Vanni, J.A. Kelly, R. Wolf, M. Caporali, Coordination chemistry of elemental phosphorus. Coord. Chem. Rev. 441, 213927 (2021)

    Article  CAS  Google Scholar 

  24. H. Minc, Permanents (Addison-Wesley, Reading, Massachusetts, 1978)

    Google Scholar 

Download references

Acknowledgements

The support of the Ministry of Aliah and Integration of the State Israel (through fellowship “Shapiro”) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir R. Rosenfeld.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenfeld, V.R. The inertia and energy gap of a vertex-decorated graph with identically weighted ‘internal’ edges and beyond. J Math Chem 60, 502–513 (2022). https://doi.org/10.1007/s10910-021-01317-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-021-01317-4

Keywords

Navigation