Skip to main content
Log in

Eigenvalues of saturated hydrocarbons

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

A simplified Hückel-type molecular-orbital (MO) model for the valence electrons of saturated hydrocarbons is proposed and the consequent eigenvalue spectrum considered. A first foundational result is obtained, which every chemist “knows”, namely that: alkanes are stable, with half their (Hückel-type MO) eigenvalues positive and half negative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Amongst these “early mathematicians” one might also be tempted to include A. A. Cayley for his somewhat more widely recognized work on alkane enumeration [2]. But though he evidently learned of this matter from Sylvester [24], Cayley stuck with the ordinary molecular graph (as in Fig. 1), or yet more abbreviatedly with the H-deleted C-network graph.

References

  1. N. Biggs, E.K. Lloyd, R.J. Wilson, Graph theory, 1736–1936 (Clarendon Press, Oxford, 1986)

    Google Scholar 

  2. A. Cayley, On the mathematical theory of isomers. Philos. Mag. 67(5), 444–447 (1874)

    Google Scholar 

  3. W.K. Clifford, Extract of a letter to Mr. Sylvester from Prof. Clifford of University College, London. Am. J. Math. 1(2), 126–128 (1878)

    Article  Google Scholar 

  4. W.K. Clifford, Note on quantics of alternate numbers, used as a means for determining the invariants and covariants of quantics in general. Proc. Lond. Math. Soc 10(148), 124–129 (1880)

    Google Scholar 

  5. J. Devillers, A.T. Balaban (eds.), Topological Indices and Related Descriptors in QSAR and QSPAR, CRC, Boca Raton, FL (2000)

  6. M.J.S. Dewar, R.C. Dougherty, The PMO Theory of Organic Chemistry (Plenum Press, New York, 1975)

    Book  Google Scholar 

  7. S. El-Basil, A. Kerber (eds.), Communications in mathematical and in computer chemistry (MATCH). Special issue, no. 46 (2002)

  8. K. Fukui, H. Kato, T. Yonezawa, Frontier electron density in saturated hydrocarbons. Bull. Chem. Soc. Jpn. 34(3), 442–445 (1961)

    Article  CAS  Google Scholar 

  9. V. Gineityte, Substantiation of the basis set orthogonality assumption for saturated molecules and crystals on account of their common topological structure. J. Mol. Struct. THEOCHEM 342, 219–229 (1995)

    Article  CAS  Google Scholar 

  10. V. Gineityte, D. Shatkovskaya, Transferability of the electronic structure characteristics of saturated molecules. Int. J. Quantum Chem. 39(1), 11–17 (1991)

    Article  CAS  Google Scholar 

  11. P. Gordon, W. Akexejeff, Uberestimmung der formeln der chemie und der invariantheorie. Zeitschrift f. physikalische Chemie, Stoicheometrie, and Verwandschaftslehre 35, 610–633 (1900)

    Google Scholar 

  12. A. Graovac, I. Gutman, N. Trinajstić, Topological Approach to the Chemistry of Conjugated Molecules (Springer, Berlin, 1977)

    Book  Google Scholar 

  13. G.G. Hall, The ionization potentials of some paraffinic molecules. Trans. Faraday Soc. 50, 319–322 (1954)

    Article  CAS  Google Scholar 

  14. R. Hoffmann, An extended Hückel theory. I. Hydrocarbons. J. Chem. Phys. 39, 1397–1412 (1963)

    Article  CAS  Google Scholar 

  15. D.J. Klein, Graph theoretically formulated electronic-structure theory. Int. Electron. J. Mol. 2, 814–834 (2003)

    CAS  Google Scholar 

  16. B.D. McKay, Nauty users guide (version 2.4). Computer Science Department, Australian National University, 2007

  17. L. Pauling, The nature of the chemical bond. Application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules. J. Am. Chem. Soc. 53(4), 1367–1400 (1931)

    Article  CAS  Google Scholar 

  18. L. Pauling, The calculation of matrix elements for Lewis electronic structures of molecules. J. Chem. Phys. 1, 280–283 (1933)

    Article  CAS  Google Scholar 

  19. J.A. Pople, D.P. Santry, A molecular orbital theory of hydrocarbons. Mol. Phys. 7(3), 269–286 (1964)

    Article  CAS  Google Scholar 

  20. J.W. Raymonda, W.T. Simpson, Experimental and theoretical study of sigma-bond electronic transitions in alkanes. J. Chem. Phys. 47, 430–448 (1967)

    Article  CAS  Google Scholar 

  21. G. Rumer, Zur theorie der spinvalenz. Nachrichten von der Gesellschaft der Wissenschaften zu Gttingen. Mathematisch-Physikalische Klasse, 337–341

  22. C. Sandorfy, LCAO MO calculations on saturated hydrocarbons and their substituted derivatives. Can. J. Chem. 33(8), 1337–1351 (1955)

    Article  CAS  Google Scholar 

  23. T. Shirai, The spectrum of infinite regular line graphs. Trans. Am. Math. Soc. 352(1), 115–132 (2000)

    Article  Google Scholar 

  24. J.J. Sylvester, On an application of the new atomic theory to the graphical representation of the invariants and covariants of binary quantics, with three appendices. Am. J. Math. 1(1), 64–104 (1878)

    Article  Google Scholar 

  25. J.H. van’t Hoff, La chimie dans l’espace (PM Bazendijk, Bazendijk, 1875)

  26. H. Weyl, Philosophy of Mathematics and Natural Science (Princeton University Press, Princeton, 1949)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. E. Larson.

Additional information

The authors acknowledge the Welch Foundation of Houston, Texas, for support for this research, via grant BD-0894.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, D.J., Larson, C.E. Eigenvalues of saturated hydrocarbons. J Math Chem 51, 1608–1618 (2013). https://doi.org/10.1007/s10910-013-0168-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-013-0168-1

Keywords

Navigation