Skip to main content
Log in

Topological melting in networks of granular materials

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Granular materials represent a vast category of particle conglomerates with many areas of industrial applications. Here we represent these materials by graphs which capture their topological organization and ordering. Then, using the communicability function—a topological descriptor representing the thermal Green function of a network of harmonic oscillators—we prove the existence of a universal topological melting transition in these graphs. This transition resembles the melting process occurring in solids. We show here that crystalline-like granular materials melts at lower temperatures and display a sharper transition between solid to liquid phases than the random spatial graphs, which represent amorphous granular materials. In addition, we show the evolution mechanism of melting in these granular materials. In the particular case of crystalline materials the process starts by melting a central core of the crystal which then growth until the whole material is in the liquid phase. We provide experimental confirmation from published literature about this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Alexander, Amorphous solids: their structure, lattice dynamics and elasticity. Phys. Rep. 296, 65–236 (1998)

    Article  CAS  Google Scholar 

  2. V. Alexiades, Mathematical Modeling of Melting and Freezing Processes (CRC Press, Boca Raton, 1992)

    Google Scholar 

  3. R. Bandyopadhyay, D. Liang, J.L. Harden, R.L. Leheny, Slow dynamics, aging, and glassy rheology in soft and living matter. Solid State Commun. 139, 589–598 (2006)

    Article  CAS  Google Scholar 

  4. J. Borge-Holthoefer, Y. Moreno, A. Arenas, Modeling abnormal priming in Alzheimer’s patients with a free association network. PLoS ONE 6, e22651 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. R.W. Cahn, Melting and the surface. Nature 323, 668–669 (1986)

    Article  Google Scholar 

  6. S.N. Dorogovtsev, A.V. Goltsev, J.F. Mendes, Critical phenomena in complex networks. Rev. Modern Phys. 80, 1275 (2008)

    Article  Google Scholar 

  7. E. Estrada, The Structure of Complex Networks: Theory and Applications (Oxford University Press, Oxford!, 2012)

    Google Scholar 

  8. E. Estrada, N. Hatano, Statistical-mechanical approach to subgraph centrality in complex networks. Chem. Phys. Lett. 439, 247–251 (2007)

    Article  CAS  Google Scholar 

  9. E. Estrada, N. Hatano, Communicability in complex networks. Phys. Rev. E 77, 036111 (2008)

    Article  CAS  Google Scholar 

  10. E. Estrada, N. Hatano, M. Benzi, The physics of communicability in complex networks. Phys. Rep. 514, 89–119 (2012)

    Article  Google Scholar 

  11. E. Estrada, D.J. Higham, Network properties revealed through matrix functions. SIAM Rev. 52, 696–714 (2010)

    Article  Google Scholar 

  12. K.R. Gabriel, R.R. Sokal, A new statistical approach to geographic variation analysis. Syst. Biol. 18, 259–278 (1969)

    Google Scholar 

  13. M. Hiraiwa, M.A. Ghanem, S.P. Wallen, A. Khanolkar, A.A. Maznev, N. Boechler, Complex contact-based dynamics of microsphere monolayers revealed by resonant attenuation of surface acoustic waves. Phys. Rev. Lett. 116, 198001 (2016)

    Article  CAS  PubMed  Google Scholar 

  14. Z. Jin, P. Gumbsch, K. Lu, E. Ma, Melting mechanisms at the limit of superheating. Phys. Rev. Lett. 87, 055703 (2001)

    Article  CAS  PubMed  Google Scholar 

  15. F.A. Lindemann, The calculation of molecular eigen-frequencies. Phys. Z. (West Germany) 11, 609–612 (1910)

    CAS  Google Scholar 

  16. Y.-Y. Liu, E. Csóka, H. Zhou, M. Pósfai, Core percolation on complex networks. Phys. Rev. Lett. 109, 205703 (2012)

    Article  CAS  PubMed  Google Scholar 

  17. M.Z. Miskin, H.M. Jaeger, Adapting granular materials through artificial evolution. Nat. Mater. 12, 326 (2013)

    Article  CAS  PubMed  Google Scholar 

  18. J. Nagler, T. Tiessen, H.W. Gutch, Continuous percolation with discontinuities. Phys. Rev. X 2, 031009 (2012)

    Google Scholar 

  19. L. Papadopoulos, M.A. Porter, K.E. Daniels, D.S. Bassett, Network analysis of particles and grains. J. Complex Net. 6, 485–565 (2018)

    Article  Google Scholar 

  20. S.R. Phillpot, S. Yip, D. Wolf, How do crystals melt? Comput. Phys. 3, 20–31 (1989)

    Article  Google Scholar 

  21. M.A. Porter, P.G. Kevrekidis, C. Daraio, Granular crystals: nonlinear dynamics meets materials engineering. Phys. Today 68, 44–50 (2015)

    Article  CAS  Google Scholar 

  22. D.L. Powers, Graph partitioning by eigenvectors. Linear Algebra Its Appl. 101, 121–133 (1988)

    Article  Google Scholar 

  23. B. Rudra, Y. Jiang, Y. Li, J. Shim, A class of diatomic 2-d soft granular crystals undergoing pattern transformations. Soft Matter 13, 5824–5831 (2017)

    Article  CAS  PubMed  Google Scholar 

  24. J.H. Smith, Some properties of the spectrum of a graph, in Combinatorial Structures and their Applications, eds. by R. Guy, H. Hanani, N. Sauer, J. Schonhcim (Gordon and Breach, New York, 1970), pp. 403–406

  25. J.C. Urschel, L.T. Zikatanov, Spectral bisection of graphs and connectedness. Linear Algebra Its Appl. 449, 1–16 (2014)

    Article  Google Scholar 

  26. S.R. Vippagunta, H.G. Brittain, D.J. Grant, Crystalline solids. Adv Drug Deliv. Rev. 48, 3–26 (2001)

    Article  CAS  PubMed  Google Scholar 

  27. D.M. Walker, A. Tordesillas, Topological evolution in dense granular materials: a complex networks perspective. Int. J. Solids Struct. 47, 624–639 (2010)

    Article  Google Scholar 

  28. Z. Wang, F. Wang, Y. Peng, Y. Han, Direct observation of liquid nucleus growth in homogeneous melting of colloidal crystals. Nat. Commun. 6, 6942 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. F. Arrigo, and Prof. D. H. Higham for useful comments and suggestions which improve the presentation of the material. NA thanks Iraqi Government for a Doctoral Fellowship at the University of Strathclyde.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Estrada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alalwan, N., Arenas, A. & Estrada, E. Topological melting in networks of granular materials. J Math Chem 57, 875–894 (2019). https://doi.org/10.1007/s10910-018-0988-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-018-0988-0

Keywords

Navigation