Skip to main content
Log in

The hydra string method: a novel means to explore potential energy surfaces and its application to granular materials

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We present a novel means to understand granular materials, the Hydra String Method (HSM). This is an efficient and autonomous way to trawl an arbitrary potential energy surface (or any similarly high dimensional function) that enumerates the saddle points, minima, and minimum energy paths between them. In doing so, it creates a reduced dimensional network representation of this surface. We also present a series of tests to choose optimized parameters for the application of the HSM. We apply this to the potential energy function of a granular system consisting of a configuration of bi-disperse, frictionless, soft spheres. Future work will make use of the found ensemble of transition pathways to statistically predict the dynamics of a system of grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All processed data is presented in the manuscript figures.

Code availability

https://github.com/knewhall/Hydra_String.

References

  1. Franklin, S.V., Shattuck, M.D.: Handbook of Granular Materials. Taylor & Francis Ltd., Milton Park (2016)

    Book  Google Scholar 

  2. Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68(4), 1259–1273 (1996)

    Article  ADS  Google Scholar 

  3. Richard, P., Nicodemi, M., Delannay, R., Ribière, P., Bideau, D.: Slow relaxation and compaction of granular systems. Nat. Mater. 4(2), 121–128 (2005)

    Article  ADS  Google Scholar 

  4. van Hecke, M.: Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J. Phys. Condens. Matter 22(3), 033101 (2009)

  5. Gao, G.-J., Blawzdziewicz, J., O’Hern, C.S.: Geometrical families of mechanically stable granular packings. Phys. Rev. E 80(6), 061303 (2009)

    Article  ADS  Google Scholar 

  6. Ashwin, S.S., Blawzdziewicz, J., O’Hern, C.S., Shattuck, M.D.: Calculations of the structure of basin volumes for mechanically stable packings. Phys. Rev. E 85(6), 061307 (2012)

    Article  ADS  Google Scholar 

  7. Tuckman, P.J., VanderWerf, K., Yuan, Y., Zhang, S., Zhang, J., Shattuck, M.D., O’Hern, C.S.: Contact network changes in ordered and disordered disk packings. Soft Matter 16(41), 9443–9455 (2020)

    Article  ADS  Google Scholar 

  8. Basu, A., Ye, X., Tim Still, P.E., Arratia, Z.Z., Nordstrom, K.N., Rieser, J.M., Gollub, J.P., Durian, D.J., Yodh, A.G.: Rheology of soft colloids across the onset of rigidity: scaling behavior, thermal, and non-thermal responses. Soft Matter 10(17), 3027 (2014)

    Article  ADS  Google Scholar 

  9. D’Anna, G., Mayor, P., Barrat, A., Loreto, V., Nori, F.: Observing Brownian motion in vibration-fluidized granular matter. Nature 424(6951), 909–912 (2003)

  10. Maiti, M., Schmiedeberg, M.: Ergodicity breaking transition in a glassy soft sphere system at small but non-zero temperatures. Sci. Rep. 8(1), (2018)

  11. Maiti, M., Schmiedeberg, M.: The thermal jamming transition of soft harmonic disks in two dimensions. Eur. Phys. J. E 42(3), (2019)

  12. Markus B.-B., and Andreas H.: Shearing small glass-forming systems: a potential energy landscape perspective. Phys. Rev. E 98(3), (2018)

  13. Mungan, M., Sastry, S., Dahmen, K., Regev, I.: Networks and hierarchies: How amorphous materials learn to remember. Phys. Rev. Lett. 123(17), 178002 (2019)

    Article  ADS  Google Scholar 

  14. Weinan, E., Ren, W., Vanden-Eijnden, E.: String method for the study of rare events. Phys. Rev. B 66(5), 052301 (2002)

    ADS  Google Scholar 

  15. Ren, W., Vanden-Eijnden, E.: A climbing string method for saddle point search. J. Chem. Phys. 138(13), 134105 (2013)

    Article  ADS  Google Scholar 

  16. Henkelman, G., Jónsson, H.: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113(22), 9978–9985 (2000)

    Article  ADS  Google Scholar 

  17. Henkelman, G., Uberuaga, B.P., Jónsson, H.: A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901–9904 (2000)

    Article  ADS  Google Scholar 

  18. Henkelman, G., Jónsson, H.: A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111(15), 7010–7022 (1999)

    Article  ADS  Google Scholar 

  19. Olsen, R.A., Kroes, G.J., Henkelman, G., Arnaldsson, A., Jónsson, H.: Comparison of methods for finding saddle points without knowledge of the final states. J. Chem. Phys. 121(20), 9776–9792 (2004)

    Article  ADS  Google Scholar 

  20. Heyden, A., Bell, A.T., Keil, F.J.: Efficient methods for finding transition states in chemical reactions: comparison of improved dimer method and partitioned rational function optimization method. J. Chem. Phys. 123(22), 224101 (2005)

    Article  ADS  Google Scholar 

  21. Barkema, G.T., Mousseau, N.: Event-based relaxation of continuous disordered systems. Phys. Rev. Lett. 77(21), 4358–4361 (1996)

    Article  ADS  Google Scholar 

  22. Malek, R., Mousseau, N.: Dynamics of Lennard–Jones clusters: a characterization of the activation–relaxation technique. Phys. Rev. E 62(6), 7723–7728 (2000)

    Article  ADS  Google Scholar 

  23. Jay, A., Huet, C., Salles, N., Gunde, M., Martin-Samos, L., Richard, N., Landa, G., Goiffon, V., De Gironcoli, S., Hémeryck, A., Mousseau, N.: Finding reaction pathways and transition states: r-ARTn and d-ARTn as an efficient and versatile alternative to string approaches. J. Chem. Theory Comput. 16(10), 6726–6734 (2020)

    Article  Google Scholar 

  24. Müller, K.: Reaction paths on multidimensional energy hypersurfaces. Angewandte Chemie International Edition in English 19(1), 1–13 (1980)

    Article  ADS  Google Scholar 

  25. Vanden-Eijnden, E.: Transition Path Theory, pp. 453–493. Springer, Berlin, Heidelberg (2006)

    Google Scholar 

  26. Perry, R.W., Holmes-Cerfon, M.C., Brenner, M.P., Manoharan, V.N.: Two-dimensional clusters of colloidal spheres: ground states, excited states, and structural rearrangements. Phys. Rev. Lett. 114(22), 228301 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  27. Yucen, H., Jianyuan, Y., Pingwen, Z., Apala, M., Lei, Z.: Solution landscape of a reduced landau-de gennes model on a hexagon. arXiv (2020)

  28. Doye, J.P.K., Massen, C.P.: Characterizing the network topology of the energy landscapes of atomic clusters. J. Chem. Phys. 122(8), 084105 (2005)

    Article  ADS  Google Scholar 

  29. Doye, J.P.K.: Network topology of a potential energy landscape: a static scale-free network. Phys. Rev. Lett. 88(23), 238701 (2002)

    Article  ADS  Google Scholar 

  30. Schön, J.C.: Energy landscape of two-dimensional lattice polymers. J. Phys. Chem. A 106(45), 10886–10892 (2002)

    Article  Google Scholar 

  31. Mills, G., Jónsson, H., Schenter, G.K.: Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf. Sci. 324(2–3), 305–337 (1995)

    Article  ADS  Google Scholar 

  32. Majmudar, T.S., Behringer, R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435(7045), 1079–1082 (2005)

    Article  ADS  Google Scholar 

  33. Zadeh, A.A., Barés, J., Brzinski, T.A., Daniels, K.E., Dijksman, J., Docquier, N., Everitt, H.O., Kollmer, J.E., Lantsoght, O., Wang, D., Workamp, M., Yiqiu Z., Hu, Z.: Enlightening force chains: a review of photoelasticimetry in granular matter. Granular Matter 21(4) (2019)

  34. Morse, P., Wijtmans, S., van Deen, M., van Hecke, M., Manning, M.L.: Differences in plasticity between hard and soft spheres. Phys. Rev. Res. 2(2), (2020)

  35. Zhang, K., Kuo, C.-C., See, N., O’Hern, C., Dennin, M.: Stable small bubble clusters in two-dimensional foams. Soft Matter 13(24), 4370–4380 (2017)

    Article  ADS  Google Scholar 

  36. Chill, S.T., Stevenson, J., Ruehle, V., Shang, C., Xiao, P., Farrell, J.D., Wales, D.J., Henkelman, G.: Benchmarks for characterization of minima, transition states, and pathways in atomic, molecular, and condensed matter systems. J. Chem. Theory Comput. 10(12), 5476–5482 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Eric Vanden-Eijnden for discussions on the implementation of the string method as well as Karen Daniels, Ryan Kozlowski and Jack Featherstone for their feedback on an earlier draft of this manuscript.

Funding

This work was supported by the National Science Foundation DMS-1816394.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Moakler.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moakler, C., Newhall, K.A. The hydra string method: a novel means to explore potential energy surfaces and its application to granular materials. Granular Matter 24, 24 (2022). https://doi.org/10.1007/s10035-021-01184-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-021-01184-5

Keywords

Navigation