Skip to main content
Log in

Cosmic Ray Susceptibility of the Terahertz Intensity Mapper Detector Arrays

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We report on the effects of cosmic ray interactions with the kinetic inductance detector (KID)-based focal plane array for the terahertz intensity mapper (TIM). TIM is a NASA-funded balloon-borne experiment designed to probe the peak of the star formation in the Universe. It employs two spectroscopic bands, each equipped with a focal plane of four \(\sim \,\)900-pixel, KID-based array chips. Measurements of an 864-pixel TIM array show 791 resonators in a 0.5 GHz bandwidth. We discuss challenges with resonator calibration caused by this high multiplexing density. We robustly identify the physical positions of 788 (99.6 %) detectors using a custom LED-based identification scheme. Using this information, we show that cosmic ray events occur at a rate of 2.1\(\,\mathrm {events/min/cm^2}\) in our array. 66 % of the events affect a single pixel, and other 33 % affect \(<\,\)5 KIDs per event spread over a 0.66\(\,\mathrm {cm^2}\) region (2 pixel pitches in radius). We observe a total cosmic ray dead fraction of 0.0011 % and predict that the maximum possible in-flight dead fraction is \(\sim \,\)0.124 %, which demonstrates our design will be robust against these high-energy events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Larger fluxes could be possible if the effective area impacted by a single cosmic ray even is smaller than a pixel.

  2. This may explain our measured \(f_\textrm{loss}\) \(\sim \,\)4\(\times \) lower than the minimum value reported by Karatsu et al. [14], though note that the sensitivity of the TIM devices at 250 mK is an order of magnitude lower, which complicates the attribution.

References

  1. P. Madau, M. Dickinson, Cosmic star-formation history. Annu. Rev. Astron. Astrophys. 52, 415–486 (2014). https://doi.org/10.1146/annurev-astro-081811-125615

    Article  ADS  Google Scholar 

  2. M.G. Hauser, E. Dwek, The cosmic infrared background: measurements and implications. Annu. Rev. Astron. Astrophys. 39, 249–307 (2001). https://doi.org/10.1146/annurev.astro.39.1.249

    Article  ADS  Google Scholar 

  3. G. Lagache, J.-L. Puget, H. Dole, Dusty infrared galaxies: sources of the cosmic infrared background. Annu. Rev. Astron. Astrophys. 43, 727–768 (2005). https://doi.org/10.1146/annurev.astro.43.072103.150606

    Article  ADS  Google Scholar 

  4. D.P. Marrone, J.E. Aguirre, J.S. Bracks, C.M Bradford, B.S Brendal, B. Bumble, A.J. Corso, M.J. Devlin, N. Emerson, J.P. Filippini, J. Fu, V. Gasho, C.E. Groppi, S. Hailey-Dunsheath, J. Hoh, M.I. Hollister, R.M.J. Janssen, D. Joralmon, R.P. Keenan, L.-J. Liu, I. Lowe, P. Mauskopf, E.C. Mayer, R. Nie, V. Razavimaleki, Redford, J., Saeid, T. Trumper, I.L. Vieira, J.D. The terahertz intensity mapper: a balloon-borne imaging spectrometer for galaxy evolution, in SPIE Proceedings, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI, vol. 12190 (2022). https://doi.org/10.1117/12.2630644

  5. J. Vieira, J. Aguirre, C.M. Bradford, J. Filippini, C. Groppi, D. Marrone, M. Bethermin, T.-C. Chang, M. Devlin, O. Dore, J. Fu, S. Hailey-Dunsheath, G. Holder, G. Keating, R. Keenan, E. Kovetz, G.Lagache , P. Mauskopf, D. Narayanan, G. Popping, E. Shirokoff, R. Somerville, I. Trumper, B. Uzgil, J. Zmuidzinas, The Terahertz Intensity Mapper (TIM): a Next-Generation Experiment for Galaxy Evolution Studies. Preprint at https://arxiv.org/abs/2009.14340 (2020)

  6. A.K. Sinclair, R.C. Stephenson, C.A. Roberson, E.L. Weeks, J.Burgoyne, A.I. Huber, P.M. Mauskopf, S.C. Chapman, J.E. Austermann, S.K. Choi, C.J. Duell, M. Fich, C.E. Groppi, Z. Huber, M.D. Niemack, T. Nikola, K.M. Rossi, A. Sriram, G.J. Stacey, E. Szakiel, J. Tsuchitori, E.M. Vavagiakis, J.D. Wheeler, Ccat-prime: Rfsoc based readout for frequency multiplexed kinetic inductance detectors, in SPIE Proceedings, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI, p. 12190 (2022). https://doi.org/10.1117/12.2629722

  7. R.M.J. Janssen, R. Nie, B. Bumble, L.-J. Liu, J. Redford, J.P. Filippini, C.M. Bradford, S. Hailey-Dunsheath, J.E. Aguirre, J.S. Bracks, A.J. Corso, J. Fu, C.E. Groppi, J. Hoh, R.P. Keenan, I.N. Lowe, D.P. Marrone, P.D. Mauskopf, I. Trumper, J.D. Vieira, Single pixel performance of the kinetic inductance detectors for the terahertz intensity mapper. J. Low Temp. Phys. 211, 197–206 (2022). https://doi.org/10.1007/s10909-022-02830-9

    Article  ADS  Google Scholar 

  8. L.-J. Liu, R.M.J. Janssen, C.M. Bradford, S. Hailey-Dunsheath, J. Fu, J.P. Filippini, J.E. Aguirre, J.S. Bracks, A.J. Corso, C. Groppi, J. Hoh, R.P. Keenan, I.N. Lowe, D.P. Marrone, P. Mauskopf, R. Nie, J. Redford, I. Trumper, J.D. Vieira, Design of the kinetic inductance detector based focal plane assembly for the terahertz intensity mapper. J. Low Temp. Phys. 209, 953–961 (2022). https://doi.org/10.1007/s10909-022-02882-x

    Article  ADS  Google Scholar 

  9. L.-J. Liu, R.M.J. Janssen, C.M. Bradford, S. Hailey-Dunsheath, J.P. Filippini, J.E. Aguirre, J.S. Bracks, A.J. Corso, J. Fu, C. Groppi, J. Hoh, R.P. Keenan, I.N. Lowe, D.P. Marrone, P. Mauskopf, R. Nie, J. Redford, I. Trumper, J.D. Vieira, Design and testing of kinetic inductance detector package for the terahertz intensity mapper, in SPIE Proceedings Millimeter. Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI, p. 12190 (2022). https://doi.org/10.1117/12.2629675

  10. R.M.J. Janssen, L.-J. Liu et al., Large-format kinetic inductance detector based array design using a unit cell approach. in prep (2024)

  11. X. Liu, W. Guo, Y. Wang, L.F. Wei, C.M. McKenney, B. Dober, T. Billings, J. Hubmayr, L.S. Ferreira, M.R. Vissers, J. Gao, Cryogenic led pixel-to-frequency mapper for kinetic inductance detector arrays. J. Appl. Phys. (2017). https://doi.org/10.1063/1.4994170

    Article  Google Scholar 

  12. L.-J. Liu, R.M.J. Janssen, et al.: Demonstration of the trim post-processing on the kilo-pixel aluminum kinetic inductance detector array. in prep (2024)

  13. L. Foote, C. Albert, J. Baselmans, A. Beyer, N.F. Cothard, P.K. Day, S. Hailey-Dunsheath, P. Echternach, J. Glenn, R.M.J. Janssen, E. Kane, H. Leduc, L.-J. Liu, H. Nguyen, J. Perido, J. Zmuidzinas, C.M. Bradford, Mitigation of cosmic ray effect on microwave kinetic inductance detector arrays. J. Low Temp. Phys. (2023) (This Special Issue)

  14. K. Karatsu, A. Endo, J. Bueno, P.J. Visser, R. Barends, D.J. Thoen, V. Murugesan, N. Tomita, J.J.A. Baselmans, Mitigation of cosmic ray effect on microwave kinetic inductance detector arrays. Appl. Phys. Lett. (2019). https://doi.org/10.1063/1.5052419

  15. A. Catalano, A. Benoit, O. Bourrion, M. Calvo, G. Coiffard, A. D’Addabbo, J. Goupy, H. Le Sueur, J. Macías-Pérez, A. Monfardini, Maturity of lumped element kinetic inductance detectors for space-borne instruments in the range between 80 and 180 ghz. A &A 592, 26 (2016). https://doi.org/10.1051/0004-6361/201527715

    Article  Google Scholar 

  16. C.D. Wilen, S. Abdullah, N.A. Kurinsky, C. Stanford, L. Cardani, G. D’Imperio, C. Tomei, L. Faoro, L.B. Ioffe, C.H. Liu, A. Opremcak, B.G. Christensen, J.L. DuBois, R. McDermott, Correlated charge noise and relaxation errors in superconducting qubits. Nature 594(7863), 369–373 (2021). https://doi.org/10.1038/s41586-021-03557-5. arXiv:2012.06029 [quant-ph]

  17. M. McEwen, L. Faoro, K. Arya, A. Dunsworth, T. Huang, S. Kim, B. Burkett, A. Fowler, F. Arute, J.C. Bardin, A. Bengtsson, A. Bilmes, B.B. Buckley, N. Bushnell, Z. Chen, R. Collins, S. Demura, A.R. Derk, C. Erickson, M. Giustina, S.D. Harrington, S. Hong, E. Jeffrey, J. Kelly, P.V. Klimov, F. Kostritsa, P. Laptev, A. Locharla, X. Mi, K.C. Miao, S. Montazeri, J. Mutus, O. Naaman, M. Neeley, C. Neill, A. Opremcak, C. Quintana, N. Redd, P. Roushan, D. Sank, K.J. Satzinger, V. Shvarts, T. White, Z.J. Yao, P. Yeh, J. Yoo, Y. Chen, V. Smelyanskiy, J.M. Martinis, H. Neven, A. Megrant, L. Ioffe, R. Barends, Resolving catastrophic error bursts from cosmic rays in large arrays of superconducting qubits. Nat. Phys. 18(1), 107–111 (2022). https://doi.org/10.1038/s41567-021-01432-8. arXiv:2104.05219 [quant-ph]

  18. R.L. Workman, V.D. Burkert, V. Crede, E. Klempt, U. Thoma, L. Tiator, K. Agashe, G. Aielli, B.C. Allanach, C. Amsler, M. Antonelli, E.C. Aschenauer, D.M. Asner, H. Baer, S. Banerjee, R.M. Barnett, L. Baudis, C.W. Bauer, J.J. Beatty, V.I. Belousov, J. Beringer, A. Bettini, O. Biebel, K.M. Black, E. Blucher, R. Bonventre, V.V. Bryzgalov, O. Buchmuller, M.A. Bychkov, R.N. Cahn, M. Carena, A. Ceccucci, A. Cerri, R.S. Chivukula, G. Cowan, K. Cranmer, O. Cremonesi, G. D’Ambrosio, T. Damour, D. de Florian, A. de Gouvêa, T. DeGrand, P. de Jong, S. Demers, B.A. Dobrescu, M. D’Onofrio, M. Doser, H.K. Dreiner, P. Eerola, U. Egede, S. Eidelman, A.X. El-Khadra, J. Ellis, S.C. Eno, J. Erler, V.V. Ezhela, W. Fetscher, B.D. Fields, A. Freitas, H. Gallagher, Y. Gershtein, T. Gherghetta, M.C. Gonzalez-Garcia, M. Goodman, C. Grab, A.V. Gritsan, C. Grojean, D.E. Groom, M. Grünewald, A. Gurtu, T. Gutsche, H.E. Haber, M. Hamel, C. Hanhart, S. Hashimoto, Y. Hayato, A. Hebecker, S. Heinemeyer, J.J. Hernández-Rey, K. Hikasa, J. Hisano, A. Höcker, J. Holder, L. Hsu, J. Huston, T. Hyodo, A. Ianni, M. Kado, M. Karliner, U.F. Katz, M. Kenzie, V.A. Khoze, S.R. Klein, F. Krauss, M. Kreps, P. Križan, B. Krusche, Y. Kwon, O. Lahav, J. Laiho, L.P. Lellouch, J. Lesgourgues, A.R. Liddle, Z. Ligeti, C.-J. Lin, C. Lippmann, T.M. Liss, L. Littenberg, C. Lourenço, K.S. Lugovsky, S.B. Lugovsky, A. Lusiani, Y. Makida, F. Maltoni, T. Mannel, A.V. Manohar, W.J. Marciano, A. Masoni, J. Matthews, U.-G. Meißner, I.-A. Melzer-Pellmann, M. Mikhasenko, D.J. Miller, D. Milstead, R.E. Mitchell, K. Mönig, P. Molaro, F. Moortgat, M. Moskovic, K. Nakamura, M. Narain, P. Nason, S. Navas, A. Nelles, M. Neubert, P. Nevski, Y. Nir, K.A. Olive, C. Patrignani, J.A. Peacock, V.A. Petrov, E. Pianori, A. Pich, A. Piepke, F. Pietropaolo, A. Pomarol, S. Pordes, S. Profumo, A. Quadt, K. Rabbertz, J. Rademacker, G. Raffelt, M. Ramsey-Musolf, B.N. Ratcliff, P. Richardson, A. Ringwald, D.J. Robinson, S. Roesler, S. Rolli, A. Romaniouk, L.J. Rosenberg, J.L. Rosner, G. Rybka, M.G. Ryskin, R.A. Ryutin, Y. Sakai, S. Sarkar, F. Sauli, O. Schneider, S. Schönert, K. Scholberg, A.J. Schwartz, J. Schwiening, D. Scott, F. Sefkow, U. Seljak, V. Sharma, S.R. Sharpe, V. Shiltsev, G. Signorelli, M. Silari, F. Simon, T. Sjöstrand, P. Skands, T. Skwarnicki, G.F. Smoot, A. Soffer, M.S. Sozzi, S. Spanier, C. Spiering, A. Stahl, S.L. Stone, Y. Sumino, M.J. Syphers, F. Takahashi, M. Tanabashi, J. Tanaka, M. Taševský, K. Terao, K. Terashi, J. Terning, R.S. Thorne, M. Titov, N.P. Tkachenko, D.R. Tovey, K. Trabelsi, P. Urquijo, G. Valencia, R. Van de Water, N. Varelas, G. Venanzoni, L. Verde, I. Vivarelli, P. Vogel, W. Vogelsang, V. Vorobyev, S.P. Wakely, W. Walkowiak, C.W. Walter, D. Wands, D.H. Weinberg, E.J. Weinberg, N. Wermes, M. White, L.R. Wiencke, S. Willocq, C.G. Wohl, C.L. Woody, W.-M. Yao, M. Yokoyama, R. Yoshida, G. Zanderighi, G.P. Zeller, O.V. Zenin, R.-Y. Zhu, S.-L. Zhu, F. Zimmermann, P.A. Zyla, Particle data group: review of particle physics. Progress Theor. Exp. Phys. 2022(8), 083–01 (2022). https://doi.org/10.1093/ptep/ptac097

    Article  Google Scholar 

  19. S. Masi, P. de Bernardis, A. Paiella, F. Piacentini, L. Lamagna, A. Coppolecchia, P.A.R. Ade, E.S. Battistelli, M.G. Castellano, I. Colantoni, F. Columbro, G. D’Alessandro, M. De Petris, S. Gordon, C. Magneville, P. Mauskopf, G. Pettinari, G. Pisano, G. Polenta, G. Presta, E. Tommasi, C. Tucker, V. Vdovin, A. Volpe, D. Yvon, Kinetic Inductance Detectors for the OLIMPO experiment: in-flight operation and performance. JCAP 2019(7), 003 (2019). https://doi.org/10.1088/1475-7516/2019/07/003. arXiv:1902.08993 [astro-ph.IM]

    Article  Google Scholar 

  20. A. Paiella, P.A.R. Ade, E.S. Battistelli, M.G. Castellano, I. Colantoni, F. Columbro, A. Coppolecchia, G. D’Alessandro, P. de Bernardis, M. De Petris, S. Gordon, L. Lamagna, C. Magneville, S. Masi, P. Mauskopf, G. Pettinari, F. Piacentini, G. Pisano, G. Polenta, G. Presta, E. Tommasi, C. Tucker, V. Vdovin, A. Volpe, D. Yvon, In-Flight Performance of the LEKIDs of the OLIMPO Experiment. J. Low Temp. Phys. 199(1–2), 491–501 (2020). https://doi.org/10.1007/s10909-020-02372-y. arXiv:2002.03589 [astro-ph.IM]

    Article  ADS  Google Scholar 

  21. X. Liu, W. Guo, Y. Wang, M. Dai, L.F. Wei, B. Dober, C.M. McKenney, G.C. Hilton, J. Hubmayr, J.E. Austermann, J.N. Ullom, J. Gao, M.R. Vissers, Superconducting micro-resonator arrays with ideal frequency spacing. Appl. Phys. Lett. (2017). https://doi.org/10.1063/1.5016190

    Article  Google Scholar 

  22. R.A. McGeehan, Superspec: development and characterization of kinetic inductance detector-based on-chip spectrometer for millimeter and sub-millimeter observations. PhD Thesis (2023)

Download references

Acknowledgements

TIM is supported by NASA under grant 80NSSC19K1242, issued through the Science Mission Directorate. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lun-Jun Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary information

In the online supplementary material, we show an animation of an example cosmic ray event that records the entire series of the interaction between this particular cosmic ray hit and the behavior of surrounding affected pixels, from the generation of the highly perturbed {\it df}/{\it f} noise to the decay back to equilibrium.(pdf 331KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, LJ., Janssen, R.M.J., Bumble, B. et al. Cosmic Ray Susceptibility of the Terahertz Intensity Mapper Detector Arrays. J Low Temp Phys (2024). https://doi.org/10.1007/s10909-024-03123-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10909-024-03123-z

Keywords

Navigation