Skip to main content
Log in

Measurement of High Density Electrons Above a Helium Film on an Amorphous Metal Substrate

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

This article has been updated

Abstract

We have measured two-dimensional electron systems bound to a thin helium film supported by a metallic substrate. We report on our measurement of electron density obtained via a Kelvin probe technique. The underlying metallic substrate is an amorphous metallic alloy (TaWSi), which can support large uniform densities due to its low surface roughness and homogeneous work function. We find that this substrate is able to support high enough densities that the electrons are expected to be Fermi-degenerate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Change history

  • 09 January 2023

    Following text is removed from the conclusion section in the xml version: “Kindly check and confirm the conflict of interest statement is correctly identified. This information is correct.”

References

  1. Y. Monarkha, K. Kono, Two-Dimensional Coulomb Liquids and Solids. Springer (2004). https://doi.org/10.1007/978-3-662-10639-6

    Article  Google Scholar 

  2. B. Spivak, S.V. Kravchenko, S.A. Kivelson X.P.A. Gao, Colloquium: Transport in strongly correlated two dimensional electron fluids. Reviews of Modern Physics 82(2), 1743–1766 (2010) arXiv:0905.0414 [cond-mat.dis-nn]. https://doi.org/10.1103/RevModPhys.82.1743

  3. G. Ortiz, M. Harris, P. Ballone, Zero Temperature Phases of the Electron Gas. prl 82(26), 5317–5320 (1999) arXiv:cond-mat/9810126 [cond-mat]. https://doi.org/10.1103/PhysRevLett.82.5317

  4. F.M. Peeters, P.M. Platzman, Electrons on films of helium: A quantum mechanical two-dimensional fermion system. Phys. Rev. Lett. 50, 2021–2023 (1983). https://doi.org/10.1103/PhysRevLett.50.2021

    Article  ADS  Google Scholar 

  5. R. Williams, R.S. Crandall, Deformation of the surface of liquid helium by electrons. Physics Letters A 36(1), 35–36 (1971). https://doi.org/10.1016/0375-9601(71)90051-X

    Article  ADS  Google Scholar 

  6. F.M. Peeters, Two-dimensional wigner crystal of electrons on a helium film: Static and dynamical properties. Phys. Rev. B 30, 159–165 (1984). https://doi.org/10.1103/PhysRevB.30.159

    Article  ADS  Google Scholar 

  7. D.M. Lytvynenko, Y.V. Slyusarenko, Analyzing the equilibrium states of a quasi-neutral spatially inhomogeneous system of charges above a liquid dielectric film based on the first principles of quantum statistics. Journal of Physics A: Mathematical and Theoretical 50(31), 315202 (2017). https://doi.org/10.1088/1751-8121/aa76ab

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Saitoh, Melting temperature of two-dimensional electron crystals trapped on thin-film liquid he. Phys. Rev. B 40, 810–812 (1989). https://doi.org/10.1103/PhysRevB.40.810

    Article  ADS  Google Scholar 

  9. C.C. Grimes, G. Adams, Evidence for a liquid-to-crystal phase transition in a classical, two-dimensional sheet of electrons. Phys. Rev. Lett. 42, 795–798 (1979). https://doi.org/10.1103/PhysRevLett.42.795

    Article  ADS  Google Scholar 

  10. J.M. Kosterlitz, D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems. Journal of Physics C: Solid State Physics 6(7), 1181–1203 (1973). https://doi.org/10.1088/0022-3719/6/7/010

    Article  ADS  Google Scholar 

  11. A.T. Asfaw, E.I. Kleinbaum, M.D. Henry, E.A. Shaner, S.A. Lyon, Transport measurements of surface electrons in 200-nm-deep helium-filled microchannels above amorphous metallic electrodes. Journal of Low Temperature Physics 195(3–4), 300–306 (2019). https://doi.org/10.1007/s10909-018-02139-6

    Article  ADS  Google Scholar 

  12. K.H. Leners, R.J. Kearney, M.J. Dresser, Stress-dependent contact potential in copper. Phys. Rev. B 6, 2943–2950 (1972). https://doi.org/10.1103/PhysRevB.6.2943

    Article  ADS  Google Scholar 

  13. K.R. Atkins, W.L. Bragg, Liquid helium films. i. the thickness of the film. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 203(1072), 119–132 (1950) https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1950.0129. https://doi.org/10.1098/rspa.1950.0129

  14. E.S. Sabisky, C.H. Anderson, Verification of the lifshitz theory of the van der waals potential using liquid-helium films. Physical Review A 7, 790–806 (1973)

    Article  ADS  Google Scholar 

  15. E. Joseph, Private communication

  16. H. Etz, W. Gombert, W. Idstein, P. Leiderer, Stability of charged \(^{4}\rm He\) films. Phys. Rev. Lett. 53, 2567–2570 (1984). https://doi.org/10.1103/PhysRevLett.53.2567

    Article  ADS  Google Scholar 

  17. I.D. Baikie, E. Venderbosch, J.A. Meyer, P.J.Z. Estrup, Analysis of stray capacitance in the kelvin method. Review of Scientific Instruments 62(3), 725–735 (1991). https://doi.org/10.1063/1.1142075.10.1063/1.1142075

    Article  ADS  Google Scholar 

  18. D. Marty, Stability of two-dimensional electrons on a fractionated helium surface. Journal of Physics C: Solid State Physics 19(30), 6097–6104 (1986). https://doi.org/10.1088/0022-3719/19/30/019

    Article  ADS  Google Scholar 

  19. F.M. Peeters, S.A. Jackson, Temperature dependence of the dynamical response of an electron on a thin liquid-helium film. Phys. Rev. B 34, 1539–1549 (1986). https://doi.org/10.1103/PhysRevB.34.1539

    Article  ADS  Google Scholar 

  20. H. Deng, Y. Liu, I. Jo, L.N. Pfeiffer, K.W. West, K.W. Baldwin, M. Shayegan, Commensurability oscillations of composite fermions induced by the periodic potential of a wigner crystal. Phys. Rev. Lett. 117, 096601 (2016). https://doi.org/10.1103/PhysRevLett.117.096601

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0020136. Support was provided, in part, through the Program in Plasma Science and Technology under DOE Contract Number DE-AC02-09CH11466.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. E. Castoria.

Ethics declarations

Conflict of interest

S.A Lyon is an officer of Eeroq Corp.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castoria, K.E., Lyon, S.A. Measurement of High Density Electrons Above a Helium Film on an Amorphous Metal Substrate. J Low Temp Phys 210, 441–450 (2023). https://doi.org/10.1007/s10909-022-02904-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02904-8

Keywords

Navigation