Skip to main content
Log in

Transport Measurements of Surface Electrons in 200-nm-Deep Helium-Filled Microchannels Above Amorphous Metallic Electrodes

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We report transport measurements of electrons on helium in a microchannel device where the channels are 200 nm deep and \(3\,\mu \hbox {m}\) wide. The channels are fabricated above amorphous metallic \(\hbox {Ta}_{40}\hbox {W}_{40}\hbox {Si}_{20}\), which has surface roughness below 1 nm and minimal variations in work function across the surface due to the absence of polycrystalline grains. We are able to set the electron density in the channels using a ground plane. We estimate a mobility of \({300}\,\hbox {cm}^2/\hbox {V}\,\hbox {s}\) and electron densities as high as \(2.56\times 10^{9}\,\hbox {cm}^{-2}\). We demonstrate control of the transport using a barrier which enables pinch-off at a central microchannel connecting two reservoirs. The conductance through the central microchannel is measured to be 10 nS for an electron density of \(1.58\times 10^{9}\,\text {cm}^{-2}\). Our work extends transport measurements of surface electrons to thin helium films in microchannel devices above metallic substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. E.Y. Andrei, Two-Dimensional Electron Systems on Helium and other Cryogenic Substrates (Springer, Netherlands, 1997)

    Book  Google Scholar 

  2. Y. Monarkha, K. Kono, Two-Dimensional Coulomb Liquids and Solids (Springer, Berlin, 2004)

    Book  Google Scholar 

  3. F.M. Peeters, P.M. Platzman, Phys. Rev. Lett. 50, 2021 (1983)

    Article  ADS  Google Scholar 

  4. H.W. Jiang, M.A. Stan, A.J. Dahm, Surf. Sci. 196, 1 (1988)

    Article  ADS  Google Scholar 

  5. H. Etz, W. Gombert, W. Idstein, P. Leiderer, Phys. Rev. Lett. 53, 2567 (1984)

    Article  ADS  Google Scholar 

  6. X.L. Hu, A.J. Dahm, Phys. Rev. B 42, 2010 (1990)

    Article  ADS  Google Scholar 

  7. C.C. Grimes, G. Adams, Surf. Sci. 98, 1 (1980)

    Article  ADS  Google Scholar 

  8. G. Mistura, T. Gnzler, S. Neser, P. Leiderer, Phys. Rev. B 56, 8360 (1997)

    Article  ADS  Google Scholar 

  9. J. Angrik, A. Faustein, J. Klier, P. Leiderer, J. Low Temp. Phys. 137, 335 (2004)

    Article  ADS  Google Scholar 

  10. J. Klier, I. Doicescu, P. Leiderer, V. Shikin, J. Low Temp. Phys. 150, 212 (2008)

    Article  ADS  Google Scholar 

  11. J.M. McGlone, Development of amorphous metal thin films for thermal inkjet printing and microelectronics, Ph.D. thesis, Oregon State University (2017)

  12. J.M. McGlone, K.R. Olsen, W.F. Stickle, J.E. Abbott, R.A. Pugliese, G.S. Long, D.A. Keszler, J.F. Wager, J. Alloys Compd. 650, 102 (2015)

    Article  Google Scholar 

  13. J.M. McGlone, K.R. Olsen, W.F. Stickle, J.E. Abbott, R.A. Pugliese, G.S. Long, D.A. Keszler, J.F. Wager, MRS Commun. 7, 715 (2017)

    Article  Google Scholar 

  14. G. Yang, A. Fragner, G. Koolstra, L. Ocola, D. Czaplewski, R. Schoelkopf, D. Schuster, Phys. Rev. X 6, 011031 (2016)

    Google Scholar 

  15. D.G. Rees, I. Kuroda, C.A. Marrache-Kikuchi, M. Hfer, P. Leiderer, K. Kono, J. Low Temp. Phys. 166, 107 (2012)

    Article  ADS  Google Scholar 

  16. A.J. Dahm, Low Temp. Phys. 29, 489 (2003)

    Article  ADS  Google Scholar 

  17. M.I. Dykman, P.M. Platzman, P. Seddighrad, Phys. Rev. B 67, 155402 (2003)

    Article  ADS  Google Scholar 

  18. S.A. Lyon, Phys. Rev. A 74, 052338 (2006)

    Article  ADS  Google Scholar 

  19. D.I. Schuster, A. Fragner, M.I. Dykman, S.A. Lyon, R.J. Schoelkopf, Phys. Rev. Lett. 105, 040503 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Devices were fabricated in the Princeton Institute for the Science and Technology of Materials Micro/Nano Fabrication Laboratory and the Princeton University Quantum Device Nanofabrication Laboratory. Work at Princeton was supported by the NSF, in part through Grant No. DMR-1506862, and in part through the Princeton MRSEC (Grant No. DMR-1420541). Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Asfaw.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asfaw, A.T., Kleinbaum, E.I., Henry, M.D. et al. Transport Measurements of Surface Electrons in 200-nm-Deep Helium-Filled Microchannels Above Amorphous Metallic Electrodes. J Low Temp Phys 195, 300–306 (2019). https://doi.org/10.1007/s10909-018-02139-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-02139-6

Navigation