Skip to main content
Log in

Cooldown Characteristics of a Neon Cryogenic Pulsating Heat Pipe

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The cooling capacity of the cryogenic pulsating heat pipe (PHP) during the cooldown process is one of the critical factors for it used as the thermal link in the cryogenic system. In this paper, the copper block with a mass of 7.69 kg is cooled by a cryogenic PHP using neon as the working fluid. The heat transfer mechanism of the cryogenic PHP during the cooldown process is analyzed. Effects of the condenser temperature and the liquid filling ratio on the cooldown characteristics of the cryogenic PHP are studied. An optimized cooldown process of the cryogenic PHP is proposed and the cooldown performance is predicted. For the copper block cooled from 250 to 40 K, the average cooling capacity of the cryogenic PHP with the optimized cooldown process is 24 W, which is 4.5 times more than that using the high purity copper rod with the same cross-sectional area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. R. Chandratilleke, H. Hatakeyama, H. Nakagome, Development of cryogenic loop heat pipes. Cryogenics 38(3), 263–269 (1998)

    Article  ADS  Google Scholar 

  2. A. Faghri, Review and advances in heat pipe science and technology. J. Heat Trans.T ASME 134(12), 123001 (2012)

    Article  Google Scholar 

  3. H. Akachi, Structure of a heat pipe. U.S. Patent 4921041 (1990)

  4. H. Akachi, Structure of micro-heat pipe. U.S. Patent 5219020 (1993)

  5. Y. Zhang, A. Faghri, Advances and unsolved issues in pulsating heat pipes. Heat Transf. Eng. 29(1), 20–44 (2008)

    Article  ADS  Google Scholar 

  6. Y. Xu, Y. Xue, H. Qi, W. Cai, An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes. Renew. Sustain. Energy Rev. 144, 110995 (2021)

    Article  Google Scholar 

  7. H. Jouhara, A. Chauhan, T. Nannou, S. Almahmoud, B. Delpech, Heat pipe based systems—advances and applications. Energy 128, 729–754 (2017)

    Article  Google Scholar 

  8. K. Natsume, T. Mito, N. Yanagi, H. Tamura, T. Tamada, K. Shikimachi, N. Hiranoc, S. Nagaya, Heat transfer performance of cryogenic oscillating heat pipes for effective cooling of superconducting magnets. Cryogenics 51(6), 309–314 (2011)

    Article  ADS  Google Scholar 

  9. T. Mito, K. Natsume, N. Yanagi, H. Tamura, T. Tamada, K. Shikimachi, N. Hiranoc, S. Nagaya, Development of highly effective cooling technology for a superconducting magnet using cryogenic OHP. IEEE Trans. Appl. Supercond. 20(3), 2023–2026 (2010)

    Article  ADS  Google Scholar 

  10. V. Patel, N. Mehta, K. Mehta, A. Badgujar, S. Mehta, N. Bora, Experimental investigation of flat plate cryogenic oscillating heat pipe. J. Low Temp. Phys. 198(1), 41–55 (2020)

    Article  ADS  Google Scholar 

  11. D. Xu, L. Li, H. Liu, Experimental investigation on the thermal performance of helium based cryogenic pulsating heat pipe. Exp. Therm. Fluid Sci. 70, 61–68 (2016)

    Article  Google Scholar 

  12. M. Li, L. Li, D. Xu, Effect of filling ratio and orientation on the performance of a multiple turns helium pulsating heat pipe. Cryogenics 100, 62–68 (2019)

    Article  ADS  Google Scholar 

  13. X. Sun, S. Li, B. Jiao, J. Pfotenhauer, Experimental study on a hydrogen closed-loop pulsating heat pipe with two turns. Cryogenics 97, 63–69 (2019)

    Article  ADS  Google Scholar 

  14. L.D. Fonseca, F. Miller, J. Pfotenhauer, Experimental heat transfer analysis of a cryogenic nitrogen pulsating heat pipe at various liquid fill ratios. Appl. Therm. Eng. 130, 343–353 (2018)

    Article  Google Scholar 

  15. L.D. Fonseca, J.M. Pfotenhauer, F. Miller, Results of a three evaporator cryogenic helium pulsating heat pipe. Int. J. Heat Mass Transf. 120, 1275–1286 (2018)

    Article  Google Scholar 

  16. J.M. Pfotenhauer, X. Sun, A. Berryhill, C.B. Shoemaker, The influence of aspect ratio on the thermal performance of a cryogenic pulsating heat pipe. Appl. Therm. Eng. 196, 117322 (2021)

    Article  Google Scholar 

  17. R. Bruce, M. Barba, F. Bouchet, A. Bonelli, B. Baudouy, Transient thermal behavior of a neon pulsating heat pipe (PHP). IEEE Trans. Appl. Supercon. 29(5), 0500305 (2019)

    Article  Google Scholar 

  18. M. Barba, R. Bruce, F. Bouchet, A. Bonelli, B. Baudouy, Effects of filling ratio of a long cryogenic pulsating heat pipe. Appl. Therm. Eng. 194, 117072 (2021)

    Article  Google Scholar 

  19. M. Barba, R. Bruce, F. Bouchet, A. Bonelli, B. Baudouy, Thermal study of a one-meter long neon cryogenic pulsating heat pipe. IOP Conf. Ser. Mater. Sci. Eng. 502, 012152 (2018)

    Article  Google Scholar 

  20. Q. Liang, Y. Li, Q. Wang, Effects of filling ratio and condenser temperature on the thermal performance of a neon cryogenic oscillating heat pipe. Cryogenics 89, 102–106 (2018)

    Article  ADS  Google Scholar 

  21. Q. Liang, Y. Li, Q. Wang, Cryogenic oscillating heat pipe for conduction-cooled superconducting magnets. IEEE Trans. Appl. Supercon. 28(3), 0600405 (2017)

    MathSciNet  Google Scholar 

  22. Q. Liang, Y. Li, Q. Wang, Experimental investigation on the performance of a neon cryogenic oscillating heat pipe. Cryogenics 84, 7–12 (2017)

    Article  ADS  Google Scholar 

  23. Y. Huang, G. Chen, Thermophysical properties of cryogenic fluids (National Defense Industry Press, Beijing, 2014)

    Google Scholar 

  24. C. Tecchio, J.L.G. Oliveira, K.V. Paiva, M.B.H. Mantelli, R. Galdolfi, L.G.S. Ribeiro, Geyser boiling phenomenon in two-phase closed loop-thermosyphons. Int. J. Heat Mass Transf. 111, 29–40 (2017)

    Article  Google Scholar 

  25. U. Christensen, Convection with pressure-and temperature-dependent non-Newtonian rheology. Geophys. J. Int. 77(2), 343–384 (1984)

    Article  ADS  Google Scholar 

  26. Z. Long, P. Zhang, Natural convection heat transfer of supercritical helium in a closed vertical cylinder. Cryogenics 61, 120–126 (2014)

    Article  Google Scholar 

  27. Cryogenic Technology Group, NIST. https://trc.nist.gov/cryogenics/materials/materialproperties.htm (2021)

Download references

Acknowledgements

This work was supported in part by the Doctoral Foundation of Henan Polytechnic University under Grant B2019-36 and National Natural Science Foundation of China under Grant 51506192.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Q., Fang, C., Li, Y. et al. Cooldown Characteristics of a Neon Cryogenic Pulsating Heat Pipe. J Low Temp Phys 207, 278–294 (2022). https://doi.org/10.1007/s10909-022-02726-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02726-8

Keywords

Navigation