Skip to main content

Advertisement

Log in

Y3Ba5Cu8Ox Superconductor Under Hydrostatic Pressure

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Superconducting Y3Ba5Cu8O18 samples were prepared by standard solid-state reaction method in comparison with Y1Ba2Cu3O7 sample. Resistance vs. temperature of both samples was measured under hydrostatic pressures up to 0.93 GPa using a piston–cylinder pressure cell. Applying the pressure resulted in a decrease in resistance in the normal state and an increase of the transition temperature Tc for both polycrystalline samples. This phenomenon is then explained in terms of the increase in carrier concentrations. Our results show a positive value of \({\mathrm{dT}}_{\mathrm{c}}/\mathrm{dP}\)=1.1 K/GPa and 1.4 K/GPa for Y123 and Y358, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H.A. Borges, M.A. Continentino, Pressure study of the paraconductivity of high Tc superconductors. Solid State Commun 80, 197 (1991)

    Article  ADS  Google Scholar 

  2. J. Metzger et al., Separation of the intrinsic pressure effect on Tc of YBa2Cu3O6.7 from a Tc enhancement caused by pressure-induced oxygen ordering. Physica C Sup 214, 371 (1993)

    Article  ADS  Google Scholar 

  3. L. Mendonca. Ferreira et al., Effects of pressure on the fluctuation conductivity of YBa2Cu3O7. Phys Rev B 69, 212505 (2004)

    Article  ADS  Google Scholar 

  4. X.J. Chen, H.Q. Lin, C.D. Gong, Pressure dependence of Tc in Y-Ba-Cu-O superconductors. Phys Rev Lett 85, 2180 (2000)

    Article  ADS  Google Scholar 

  5. S. Sadewasser et al., Pressure dependence of Tc to 17 GPa with and without relaxation effects in superconducting YBa2Cu3Ox. Phys Rev B 61, 741 (2000)

    Article  ADS  Google Scholar 

  6. S. Klotz, W. Reith, J.S. Schilling, The dependence of the superconducting transition temperature of single-crystalline YBa2Cu3O7-δ on hydrostatic pressure to 13 GPa. Physica C Sup 172, 423 (1991)

    Article  ADS  Google Scholar 

  7. S.L. Bud’ko, A.G. Gapotchenko, E.S. Itskevich, "Effect of pressure on critical fields and Tc of La1.8Sr0.2CuO4 and YBa2Cu3O7 high-Tc ceramics. Solid State Commun 69, 387 (1989)

    Article  ADS  Google Scholar 

  8. J. Baszyński, M. Maćkowiak, M. Zdanowska-Fra̧zek, Effect of pressure on the superconducting transition temperature of the (YBa)4Cu4O16−δ ceramic compound. Phys Lett A 126, 130 (1987)

    Article  ADS  Google Scholar 

  9. H.A. Ludwig, W.H. Fietz, H. Wühl, Calculation of the structural parameters of YBa2Cu3O7−δ and YBa2Cu4O8 under pressure. Physica C Sup 197, 113 (1992)

    Article  ADS  Google Scholar 

  10. Lev P. Gorkov, Vladimir Z. Kresin, Colloquium: high pressure and road to room temperature superconductivity. Rev Mod Plasma Phys 90, 011001 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  11. A.P. Drozdov et al., Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73 (2015)

    Article  ADS  Google Scholar 

  12. Maddury Somayazulu et al., Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys Rev Lett 122, 027001 (2019)

    Article  ADS  Google Scholar 

  13. R.P. Gupta, M. Gupta, Relationship between pressure-induced charge transfer and the superconducting transition temperature in YBa2Cu3O7−δ superconductors. Phys Rev B 51, 11760 (1995)

    Article  ADS  Google Scholar 

  14. R. Hajilou, H. Sedghi Gamchi, Irreversibility line and enhancement of magnetic flux pinning in Sm-doped Y123 superconductor with CuO nanoparticles. J Low Temp Phys 198, 70–89 (2020)

    Article  ADS  Google Scholar 

  15. J.D. Jorgensen et al., Pressure-induced charge transfer and dTc/dP in YBa2Cu3O7− x. Physica C Sup 171, 93 (1990)

    Article  ADS  Google Scholar 

  16. J.J. Neumeier, H.A. Zimmermann, Pressure dependence of the superconducting transition temperature of YBa2Cu3O7 as a function of carrier concentration: A test for a simple charge-transfer model. Phys Rev B 47, 8385 (1993)

    Article  ADS  Google Scholar 

  17. D.M. Ginsberg, Physical Properties of High Temperature Superconductors III, vol. 3 (World Scientific, Singapore, 1992).

    Book  Google Scholar 

  18. R.V. Vovk et al., Effect of high pressure on the electrical resistivity of optimally doped YBa2Cu3O7−δ single crystals with unidirectional planar defects. Physica B Condens 422, 33 (2013)

    Article  ADS  Google Scholar 

  19. F. Hardy et al., Enhancement of the critical temperature of HgBa2CuO4+δ by applying uniaxial and hydrostatic pressure: implications for a universal trend in cuprate superconductors. Phys Rev Lett 105, 167002 (2010)

    Article  ADS  Google Scholar 

  20. Hajime Yoshida et al., Pressure effect on the superconducting transition temperature for (YxBa1-x)CuO2.3 compound system. Jpn J Appl Phys 26, L867 (1987)

    Article  Google Scholar 

  21. A. Aliabadi, Y. Akhavan Farshchi, M. Akhavan, A new Y-based HTSC with Tc above 100 K. Physica C Sup 469, 2012 (2009)

    Article  ADS  Google Scholar 

  22. S. Gholipour et al., Structural phase of Y358 superconductor comparison with Y123. J. Supercond Nov Magn 25, 2253 (2012)

    Article  Google Scholar 

  23. S. Aghabagheri et al., Flux pinning enhancement in thin films of Y3Ba5Cu8O18.5+d. Physica C Sup 549, 4 (2018)

    Article  ADS  Google Scholar 

  24. N. Akduran, "Superconducting fluctuations in polycrystalline Y3Ba5Cu8O18. J Low Temp Phys 168, 323 (2012)

    Article  ADS  Google Scholar 

  25. C.W. Chu, L.Z. Deng, B. Lv, Hole-doped cuprate high temperature superconductors. Physica C Sup 514, 290 (2015)

    Article  ADS  Google Scholar 

  26. Warren E. Pickett, Electronic structure of the high-temperature oxide superconductors. Rev Mod Phys 61, 433 (1989)

    Article  ADS  Google Scholar 

  27. S. Massidda et al., Electronic structure and properties of YBa2Cu3O7-δ, a low dimensional, low density of states superconductor. Phys Lett A 122, 198 (1987)

    Article  ADS  Google Scholar 

  28. Jean-Marie. Tarascon et al., Oxygen and rare-earth doping of the 90-K superconducting perovskite YBa2Cu3O7-x. Phys Rev B 36, 226 (1987)

    Article  ADS  Google Scholar 

  29. Mohammad Rasti, Mohammad Reza Mohammadizadeh, Fabrication of YBCO thin films by fluorine-free MOCSD method: influence of sintering near the melting point. IEEE Trans Appl Supercond 30(6), 1–8 (2020)

    Article  Google Scholar 

  30. W.H. Fietz et al., Oxygen ordering effects and the superconducting transition temperature Tc of YBa2Cu3Ox under pressure. Physica C Sup 235, 1785 (1994)

    Article  ADS  Google Scholar 

  31. R.V. Vovk et al., Effect of high pressure on the fluctuation conductivity and the charge transfer of YBa2Cu3O7−δ single crystals. J Alloys Compd 453, 69 (2008)

    Article  Google Scholar 

  32. A. Perali, G. Varelogiannis, Anisotropic pressure dependence of the critical temperature in YBa2Cu3O7: A picture for pressure effects in cuprates. Phys Rev B 61, 3672 (2000)

    Article  ADS  Google Scholar 

  33. A.-K. Klehe et al., Hydrostatic pressure dependence of the superconducting transition temperature of HgBa2CaCu2O6+δ and HgBa2Ca2Cu3O8+δ. Physica C 223(3–4), 313–320 (1994)

    Article  ADS  Google Scholar 

  34. N. Tateiwa, Y. Haga, Evaluations of pressure-transmitting media for cryogenic experiments with diamond anvil cell. Rev Sci Instrum 80(12), 123901 (2009)

    Article  ADS  Google Scholar 

  35. A. Eiling, J.S. Schilling, Pressure and temperature dependence of electrical resistivity of Pb and Sn from 1–300K and 0–10 GPa-use as continuous resistive pressure monitor accurate over wide temperature range; superconductivity under pressure in Pb, Sn and In. J Phys F Met 11, 623 (1981)

    Article  ADS  Google Scholar 

  36. H. Khosroabadi, M. Rasti, M. Akhavan, Structural analysis of Y3Ba5Cu8O19−δ high-Tc superconductor by ab initio density functional theory. Physica C Sup 497, 84 (2014)

    Article  ADS  Google Scholar 

  37. D.D. Balla et al., Effect of hydrostatic pressure on the resistance and critical temperature of YBa2Cu3O7−δ single crystals. J Low Temp Phys 23, 777 (1997)

    Article  Google Scholar 

  38. Ch. Murayama et al., Correlation between the pressure-induced changes in the Hall coefficient and Tc in superconducting cuprates. Physica C Sup 183, 277 (1991)

    Article  ADS  Google Scholar 

  39. Tongkai Huang et al., Appearance of a maximum in the superconducting transition temperature of a Bi2.2Sr1.8CaCu2O8+y single crystal under pressure. Phys Rev B 48, 7712 (1993)

    Article  ADS  Google Scholar 

  40. K. Yoshida et al., Pressure effects on anisotropic resistivity in detwinned YBa2Cu3O7− δ: Unconventional carrier doping. Phys Rev B 60, R15035 (1999)

    Article  ADS  Google Scholar 

  41. M.R. Mohammadizadeh, M. Akhavan, Charge transfer in YBCO under pressure with bond valence sum approach. J Superconductivity 18, 299 (2005)

    Article  ADS  Google Scholar 

  42. J.D. Jorgensen et al., Recent developments in high temperature superconductivity Lect. Notes Phys 475, 1 (1996)

    Article  Google Scholar 

  43. H. Khosroabadi, M.R. Mohammadi Zadeh, M. Akhavan, Charge density distribution with pressure in Y-123. Physica B 321, 360 (2002)

    Article  ADS  Google Scholar 

  44. H. Khosroabadi, M.R. Mohammadi Zadeh, M. Akhavan, Structural and electronic properties of YBa2Cu3O7 under high pressures. Physica C Sup 370, 85 (2002)

    Article  ADS  Google Scholar 

  45. V.M. Gvozdikov, Van Hove singularity and anomalous shift of the superconducting transition in untwinned YBa2Cu3O7−δ under uniaxial pressure. Physica C Sup 235, 2127 (1994)

    Article  ADS  Google Scholar 

  46. Peifeng Gao, Rui Zhang, Xingzhe Wang, Pressure induced self-doping and dependence of critical temperature in stoichiometry YBa2Cu3O6.95 predicted by first-principle and BVS calculations. AIP Advances 7(3), 035215 (2017)

    Article  ADS  Google Scholar 

  47. Giuseppe GN. Angilella, Renato Pucci, Fabio Siringo, Interplay among critical temperature, hole content, and pressure in the cuprate superconductors. Phys Rev B 54, 15471 (1996)

    Article  ADS  Google Scholar 

  48. Hirofumi Sakakibara et al., Multiorbital analysis of the effects of uniaxial and hydrostatic pressure on Tc in the single-layered cuprate superconductors. Phys Rev B 86, 134520 (2012)

    Article  ADS  Google Scholar 

  49. R. Kubiak et al., Pressure dependence of the superconducting transition temperature of Bi-and Tl-based high-Tc superconductors. Physica C Sup 5–6, 523–529 (1990)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

Partial financial support by the research council of the University of Tehran is acknowledged. We also acknowledge M. Sandoghchi for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Mohammadizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorramshahi, M., Mohammadizadeh, M.R. Y3Ba5Cu8Ox Superconductor Under Hydrostatic Pressure. J Low Temp Phys 203, 309–318 (2021). https://doi.org/10.1007/s10909-021-02583-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02583-x

Keywords

Navigation