Skip to main content
Log in

Phase diagram of high temperature Y1Ba2Cu3O7−δ superconductor by Bean’s model and experimental techniques

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Phase diagram of Y1Ba2Cu3O7−δ (Y-123) polycrystalline sample via Bean’s model and experimental techniques is depicted by analysing electrical resistivity and vibrating sample magnetometer (VSM). A home-made VSM was used to take M–H data. The resistively upper critical field Hc2(T) of the sample was deduced from resistivity measurements under magnetic field perpendicular to the current flow direction study. The upper critical field in zero temperature Hc2(0) was determined by extrapolating applied magnetic field (H) vs. temperature (T). The coherence length, lattice parameters, oxygen content, penetration depth and critical current density at absolute temperature are estimated. The critical state equation Jc = Jc(T,B), based on experimental results and Bean critical-state model, was proposed to calculate the critical current density vs. applied magnetic field. Applied critical magnetic field Hc and critical current density Jc vs. temperature T are calculated and plotted. We finally plotted the phase diagram of the polycrystalline sample as an essential structure for the progress of comprehensive applications of high-temperature superconductors, where substantial critical current densities (Jc) in the vicinity of applied fields and temperatures are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Doiron-Leyraud N, Proust C, LeBoeuf D, Levallois J, Bonnemaison J B, Liang R et al 2007 Nature 447 565

    Article  CAS  Google Scholar 

  2. Mahmoud A S, Russell G J, Koblischka M R, Chikumoto N and Murakami M 2004 Phys. C Supercond. Appl. 415 40

    Article  CAS  Google Scholar 

  3. Hattori K, Saito A, Takano Y, Suzuki T, Yamada H, Takayama T et al 2011 Phys. C Supercond. Appl. 471 1033

    Article  CAS  Google Scholar 

  4. Ota S, Ono S, Lee J H, Saito A, Yamasaki H and Ohshima S 2009 Phys. C Supercond. Appl. 469 1454

    Article  CAS  Google Scholar 

  5. Inoue M, Abiru K, Honda Y, Kiss T, Iijima Y, Kakimoto K et al 2009 in IEEE Trans. Appl. Supercond. 19 2847

  6. Bean C P 1962 Phys. Rev. Lett. 8 250

    Article  Google Scholar 

  7. Bourdillon A and Bourdillon T N X 1994 HTS Supercond. Academic Press London, Sci. Technol.

    Google Scholar 

  8. Shams G, Mahmoodinezhad A and Ranjbar M 2018 Iran J. Sci. Technol. Trans. Sci. 42 2337

    Article  Google Scholar 

  9. Werthamer N R, Helfand E and Hohenberg P C 1966 Phys. Rev. 147 295

    Article  CAS  Google Scholar 

  10. Sekitani T, Miura N, Ikeda S, Matsuda Y and Shio-hara Y 2004 Physica B Condens. Matter 346 319

    Article  CAS  Google Scholar 

  11. Goettee J, Kudasov Y B, Zerwekh W, Bykov A, Dolotenko M, Fowler C et al 1994 Phys. C Supercond. Appl. 235 2090

    Article  Google Scholar 

  12. Miura N, Nakagawa H, Sekitani T, Naito M, Sato H and Enomoto Y 2002 Physica B Condens. Matter 319 310

    Article  CAS  Google Scholar 

  13. Malik B A, Asokan K, Ganesan V, Singh D and Malik M A 2016 Phys. C Supercond. Appl. 531 85

    Article  CAS  Google Scholar 

  14. Smith D O 1956 Rev. Sci. Instrum. 27 261

    Article  Google Scholar 

  15. Foner S 1959 Rev. Sci. Instrum. 30 548

    Article  Google Scholar 

  16. Thakur K, Jiang Z, Staines M, Long N, Badcock R and Raj A 2011 Phys. C Supercond. Appl. 471 42

    Article  CAS  Google Scholar 

  17. Kim Y, Hempstead C and Strnad A 1962 Phys. Rev. Lett. 9 306

    Article  CAS  Google Scholar 

  18. Mahmoud A S 1999 in 23th meeting of condensed matter physics meeting (New South Wales, Wagga-Wagga)

  19. Roas B, Schultz L and Saemann-Ischenko G 1990 Phys. Rev. Lett. 64 1311

    Article  Google Scholar 

  20. Takahashi M, Ohkido S and Wakit K 2010 in Supercond, Sciyo

  21. Yuan H, Grosche F, Deppe M, Sparn G, Geibel C and Steglich F 2006 Phys. Rev. Lett. 96 047008

    Article  CAS  Google Scholar 

  22. Holmes A T, Jaccard D and Miyake K 2004 Phys. Rev. B 69 024508

    Article  CAS  Google Scholar 

  23. Tsujii N, Kitazawa H, Aoyagi T, Kimura T and Kido G 2007 J. Magn. Magn. Mater. 310 349

    Article  CAS  Google Scholar 

  24. Ghahramani S, Shams G and Soltani Z 2021 J. Low Temp. Phys. 205 55

    Article  CAS  Google Scholar 

  25. Welp U, Kwok W K, Crabtree G W, Vandervoort K G and Liu J Z 1989 Phys. Rev. Lett. 62 1908

    Article  CAS  Google Scholar 

  26. Karpinska K, Malinowski A, Cieplak M Z, Guha S, Gershman S, Kotliar G, et al 1996 Phys. Rev. Lett. 77 3033

    Article  Google Scholar 

  27. Mackenzie A P, Julian S R, Lonzarich G, Carington A, Hughes S D, Liu R S et al 1993 Phys. Rev. Lett. 71 1238

    Article  CAS  Google Scholar 

  28. Ando Y, Boebinger G S, Passner A, Schneemeyer L F, Kimura T, Okuya M et al 1999 Phys. Rev. B 60 12475

    Article  CAS  Google Scholar 

  29. Nakagawa H, Takamasu T, Miura N and Enomoto Y 1998 Physica B Condens. Matter 246–247 429

    Article  Google Scholar 

  30. Kujur A and Behera D 2015 J. Magn. Magn. Mater 377 34

    Article  CAS  Google Scholar 

  31. Ishida T, Okuda K, Rykov A I, Tajima S and Terasaki I 1998 Phys. Rev. B 58 5222

    Article  CAS  Google Scholar 

  32. Gosner J, Kubala B and Ankerhold J 2019 Phys. Rev. B 99 144524

    Article  CAS  Google Scholar 

  33. Talantsev E, Strickland N, Hoefakker P, Xia J and Long N 2008 Curr. Appl. Phys. 8 388

    Article  Google Scholar 

  34. Giannini E, Gladyshevskii R, Clayton N, Musolino N, Garnier V, Piriou A et al 2008 Curr. Appl. Phys. 8 115

    Article  Google Scholar 

  35. Tallon J L, Williams G V M, Bernhard C, Pooke D M, Staines M P, Johnson J D et al 1996 Phys. Rev. B 53 R11972

    Article  CAS  Google Scholar 

  36. Petrovic A, Fasano Y, Lortz R, Decroux M, Potel M, Chevrel R et al 2007 Phys. C Supercond. Appl. 460-462 702

  37. Slimani Y, Hannachi E, Salem M B, Hamrita A, Salem M B and Azzouz F B 2015 J. Supercond. Nov. Magn. 28 3001

    Article  CAS  Google Scholar 

  38. Shams G and Ranjbar M 2019 Braz. J. Phys. 49 808

    Article  Google Scholar 

  39. Malik B A, Malik M A and Asokan K 2017 Chin. J. Phys. 55 170

    Article  CAS  Google Scholar 

  40. Kresin V Z and Wolf S A 2012 J. Supercond. Nov. Magn. 25 175

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from the research centre, Shiraz Branch, Islamic Azad University, Shiraz, Iran. We are grateful to Dr Ghaffary and Mrs Jafarimehr from the Islamic Azad University-Shiraz branch for their help and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Shams.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shams, G., Ranjbar, M. Phase diagram of high temperature Y1Ba2Cu3O7−δ superconductor by Bean’s model and experimental techniques. Bull Mater Sci 45, 206 (2022). https://doi.org/10.1007/s12034-022-02796-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02796-0

Keywords

Navigation