Skip to main content
Log in

Generating a Nonclassical Thermal State Via Number Operators

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We study a nonclassical thermal state by repeatedly operating the number operator on normal thermal state. Then, we investigate the nonclassical features of this state according to the P-function, photon-number distribution, Mandel’s Q-parameter, second-order correlation function and negative Wigner distribution as well as squeezing properties. Our results show that this state presents nonclassical properties, such as sub-Poissonian statistics, anti-bunching effects and negative Wigner distribution, at low temperature with small parameter m, which is the number of times for the number operator operates on normal thermal state. However, the squeezing effect of this state is not found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X.G. Meng, Z. Wang, H.Y. Fan, J.S. Wang, Z.S. Yang, Nonclassical properties of photon-added two-mode squeezed thermal states and their decoherence in the thermal channel. J. Opt. Soc. Am. B 29, 1844–1853 (2012)

    Article  ADS  Google Scholar 

  2. X.G. Meng, Z. Wang, H.Y. Fan, J.S. Wang, Squeezed number state and squeezed thermal state: decoherence analysis and nonclassical properties in the laser process. J. Opt. Soc. Am. B 29, 1835–1843 (2012)

    Article  ADS  Google Scholar 

  3. K. Berrada, S. Abdel-Khalek, Nonclassical properties and purity of a qubit system in photon-added squeezed thermal states with time-dependent coupling effect. Physica E Low Dimens. Syst. Nanostruct. 84, 361–366 (2016)

    Article  ADS  Google Scholar 

  4. L. Mista, D. McNulty, G. Adesso, No-activation theorem for Gaussian nonclassical correlations by Gaussian operations. Phys. Rev. A 90, 022328 (2014)

    Article  ADS  Google Scholar 

  5. H. Yonezawa, T. Aoki, A. Furusawa, Demonstration of a quantum teleportation network for continuous variables. Nature 431, 430–433 (2004)

    Article  ADS  Google Scholar 

  6. X.G. Meng, Z. Wang, H.Y. Fan, J.S. Wang, Nonclassicality and decoherence of photon-subtracted squeezed vacuum states. J Opt Soc Am B 29, 3141–3149 (2012)

    Article  ADS  Google Scholar 

  7. S. Wang, L.-L. Hou, X.-F. Chen, X.-F. Xu, Continuous-variable quantum teleportation with non-Gaussian entangled states generated via multiple-photon subtraction and addition. Phys. Rev. A 91, 063832 (2015)

    Article  ADS  Google Scholar 

  8. G.S. Agarwal, K. Tara, Nonclassical properties of states generated by the excitations on a coherent state. Phys. Rev. A 43, 492–497 (1991)

    Article  ADS  Google Scholar 

  9. G. Ren, J.-M. Du, W.-H. Zhang, Nonclassicality of photon-subtracted squeezing-enhanced coherent state. Phys. A 514, 290–297 (2019)

    Article  MathSciNet  Google Scholar 

  10. M.S. Kim, Recent developments in photon-level operations on travelling light fields. J. Phys. B: At. Mol. Opt. Phys. 41, 133001 (2008)

    Article  ADS  Google Scholar 

  11. V. Parigi, A. Zavatta, M. Kim, M. Bellini, Probing quantum commutation rules by addition and subtraction of single photons to/from a light field. Science 317, 1890–1893 (2007)

    Article  ADS  Google Scholar 

  12. L. Bretheau, P. Campagne-Ibarcq, E. Flurin, F. Mallet, B. Huard, Quantum dynamics of an electromagnetic mode that cannot contain N photons. Science 348, 776–779 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  13. P. Marian, T.A. Marian, Squeezed states with thermal noise. I. Photon-number statistics. Phys. Rev. A 47, 4474–4486 (1993)

    Article  ADS  Google Scholar 

  14. L. Mandel, Sub-poissonian photon statistics in resonance fluorescence. Opt. Lett. 4, 205–207 (1979)

    Article  ADS  Google Scholar 

  15. G. Ren, J.-M. Du, W.-H. Zhang, New optical field generated by partial tracing over two-mode squeezing–rotating entangled vacuum state. J. Low Temp. Phys. 191, 194–205 (2018)

    Article  ADS  Google Scholar 

  16. P. Lähteenmäki, V. Vesterinen, J. Hassel, G.S. Paraoanu, H. Seppä, P. Hakonen, Advanced concepts in Josephson junction reflection amplifiers. J. Low Temp. Phys. 175, 868–876 (2014)

    Article  ADS  Google Scholar 

  17. E. Wigner, On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    ADS  MATH  Google Scholar 

  18. J. Lee, J. Kim, H. Nha, Demonstrating higher-order nonclassical effects by photon-added classical states: realistic schemes. J. Opt. Soc. Am. B 26, 1363–1369 (2009)

    Article  ADS  Google Scholar 

  19. Z.-L. Wan, Z. Wu, H.-Y. Fan, Temperature effect of measuring one of the two modes of a new two-mode optical field. J. Low Temp. Phys. 181, 234–241 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This work is supported by the Natural Science Foundation of the Anhui Higher Education Institutions of China (Grant No. KJ2019A0688).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, G., Du, Jm., Yu, Hj. et al. Generating a Nonclassical Thermal State Via Number Operators. J Low Temp Phys 201, 426–436 (2020). https://doi.org/10.1007/s10909-020-02509-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02509-z

Keywords

Navigation