Skip to main content
Log in

Advanced Concepts in Josephson Junction Reflection Amplifiers

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Low-noise amplification at microwave frequencies has become increasingly important for the research related to superconducting qubits and nanoelectromechanical systems. The fundamental limit of added noise by a phase-preserving amplifier is the standard quantum limit, often expressed as noise temperature \(T_q=\hbar \omega /2k_B\). Towards the goal of the quantum limit, we have developed an amplifier based on intrinsic negative resistance of a selectively damped Josephson junction. Here we present measurement results on previously proposed wide-band microwave amplification and discuss the challenges for improvements on the existing designs. We have also studied flux-pumped metamaterial-based parametric amplifiers, whose operating frequency can be widely tuned by external DC-flux, and demonstrate operation at \(2\omega \) pumping, in contrast to the typical metamaterial amplifiers pumped via signal lines at \(\omega \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. This is due to the fact that, within the range of available junction parameters in our fabrication process, the tunability of resonant frequency of a single SQUID resonator would be strongly limited by the necessary, non-ideal tuning capacitance.

References

  1. A.A. Clerk, M.H. Devoret, S.M. Girvin, F. Marquardt, R.J. Schoelkopf, Rev. Mod. Phys. 81, 1155 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  2. P. Lähteenmäki, V. Vesterinen, J. Hassel, H. Seppä, P. Hakonen, Sci. Rep. 2, 276 (2012)

    Article  Google Scholar 

  3. M. Hatridge, R. Vijay, D.H. Slichter, J. Clarke, I. Siddiqi, Phys. Rev. B 83, 134501 (2011)

    Article  ADS  Google Scholar 

  4. B. Yurke, L.R. Corruccini, P.G. Kaminsky, L.W. Rupp, Phys. Rev. A 39, 2519 (1989)

    Article  ADS  Google Scholar 

  5. B. Yurke, M.L. Roukes, R. Movshovich, A.N. Pargellis, Appl. Phys. Lett. 69, 3078 (1996)

    Article  ADS  Google Scholar 

  6. N. Bergeal, F. Schackert, M. Metcalfe et al., Nature 465, 64 (2010)

    Article  ADS  Google Scholar 

  7. M. Mück, J.B. Kycia, J. Clarke, Appl. Phys. Lett. 78, 967 (2001)

    Article  ADS  Google Scholar 

  8. S.J. Asztalos, G. Carosi, C. Hagmann et al., Phys. Rev. Lett. 104, 041301 (2010)

    Article  ADS  Google Scholar 

  9. M.A. Castellanos-Beltran, K.D. Irwin, G.C. Hilton, L.R. Vale, K.W. Lehnert, Nat. Phys. 4, 929 (2008)

    Article  Google Scholar 

  10. J.D. Teufel, T. Donner, M.A. Castellanos-Beltran, J.W. Harlow, K.W. Lehnert, Nat. Nanotechnol. 4, 820 (2009)

    Article  ADS  Google Scholar 

  11. M.A. Castellanos-Beltran, K.W. Lehnert, Appl. Phys. Lett. 91, 083509 (2007)

    Article  ADS  Google Scholar 

  12. L. Spietz, K. Irwin, J. Aumentado, Appl. Phys. Lett. 93, 082506 (2008)

    Article  ADS  Google Scholar 

  13. J.J. Tiemann, Proc. IRE 8, 1418 (1960)

    Article  Google Scholar 

  14. A. Vystavkin, V. Gubankov, L. Kuzmin, K. Likharev, V. Migulin, V. Semenov, IEEE Trans. Magn. 13, 233 (1977)

    Article  ADS  Google Scholar 

  15. N. Calander, T. Claeson, S. Runder. J. Appl. Phys. 53, 5093 (1982)

  16. P. Lähteenmäki, G.S. Paraoanu, J. Hassel, P.J. Hakonen, Proc. Natl. Acad. Sci 110, 4234–4238 (2013)

    Article  ADS  Google Scholar 

  17. L.A. Blackwell, K.L. Kotzebue, Semiconductor Diode Parametric Amplifiers (Prentice-Hall, Englewood Cliffs, 1961)

    Google Scholar 

  18. M. Tinkham, Introduction to Supercondictivity, 2nd edn. (Dover, Mineola, 2004)

    Google Scholar 

  19. R.H. Koch, D.J. Van Harlingen, J. Clarke, Phys. Rev. B 26, 74 (1982)

    Article  ADS  Google Scholar 

  20. H. Seppä, M. Kiviranta, A. Satrapinski, L. Grönberg, J. Salmi, I. Suni, IEEE Trans. Appl. Supercond. 3, 1816 (1993)

    Article  Google Scholar 

  21. K.K. Likharev, Dynamics of Josephson Junctions and Circuits, 3rd edn. (Gordon And Breach, Amsterdam, 1997)

    Google Scholar 

  22. A. Vystavkin, V. Gubankov, L. Kuzmin, K. Likharev, V. Migulin, V. Semenov, IEEE Trans. Magn. 13, 233 (1977)

    Article  ADS  Google Scholar 

  23. V. Vesterinen, J. Hassel, H. Sepp, IEEE Trans. Appl. Supercond. 23, 1500104 (2013)

    Article  Google Scholar 

  24. J. Hassel, P. Lahteenmki, A. Timofeev, G. S. Paraoanu, P. J. Hakonen, in PIERS Proceedings, August 12–15, Stockholm (2013), pp. 484–488.

  25. D. Gunnarsson, J-M. Pirkkalainen, J. Li, et al., Sup. Sci. Technol. 26, 085010 (2013)

    Google Scholar 

Download references

Acknowledgments

Our work was supported in part by the EU 7th Framework Programme (FP7/2007-2013, Grant No. 228464 Microkelvin) and by the Academy of Finland (Projects No. 250280 [LTQ CoE Grant], No. 135908 and No. 263457). This research project made use of the Aalto University Cryohall infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasi Lähteenmäki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lähteenmäki, P., Vesterinen, V., Hassel, J. et al. Advanced Concepts in Josephson Junction Reflection Amplifiers. J Low Temp Phys 175, 868–876 (2014). https://doi.org/10.1007/s10909-014-1170-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1170-0

Keywords

Navigation