Skip to main content
Log in

Design, Simulation and Fabrication of Highly Sensitive Cooled Silicon Bolometers for Millimeter-Wave Detection

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

This paper reports our results on the electrothermal modeling of cryogenic silicon bolometers with pixel pitches of 500 and 1200 µm designed for cosmic microwave background polarimetric observation in 0.6 mm and 1.5 mm bands. These detectors should provide a high responsivity, typically around 1011 V/W, and a very low noise equivalent power (NEP) of 10−18 W/Hz1/2 between 50 and 100 mK. They are based on doped silicon thermometers, which exhibit a nonohmic behavior described by the “hot electron model” (HEM) at very low temperature under high bias currents. We compare this model to the experimental characterization of these thermometers at cryogenic temperatures to confirm that the HEM is governing their electrical characteristics and their sensitivity at very low temperature. Finally, this model is used to derive the simulated responsivity and NEP performances of the pixels under weak and moderate optical power illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In the VRH regime, the conduction results from localized states in a narrow band around the Fermi level. For an intermediate compensation (K = Na/Nd ~ 0.5), there is no region close to the Fermi level where the density of states is constant because the Coulomb gap is maximum. Consequently, at low enough temperature, which is activating the hopping process, the effect of the Coulomb gap is noticeable: there is no region where γ = ¼ (Mott model) [5].

References

  1. K.L. Denis, A. Ali, J. Appel, C.L. Bennett, M.P. Chang, D.T. Chuss, F.A. Colazo, N. Costen, T. Essinger-Hileman, R. Hu, T. Marriage, K. Rostem, K. U-Yen, E.J. Wollack, J Low Temp Phys 184, 668–673 (2016). https://doi.org/10.1007/s10909-015-1366-y

    Article  ADS  Google Scholar 

  2. L. Rodriguez, A. Poglitsch, A. Aliane, J. Martignac, D. Dubreuil, L. Dussopt, V. Revéret, V. Goudon, S. Bounissou, O.-A. Adami, C. Delisle, O. Gevin, X. De La Broise, B. Maffei, J.-L. Sauvageot, J. Low Temp. Phys. 193, 449–454 (2018). https://doi.org/10.1007/s10909-018-2000-6

    Article  ADS  Google Scholar 

  3. A. Aliane, M. Solana, W. Rabaud, L. Saminadayar, P. Agnese, V. Goudon, L. Dussopt, C. Vialle, E. Baghe, S. Pocas, L. Carle, N. Lio Soon Shun, S. Becker, V. Reveret, L. Rodriguez, A. Hamelin, A. Poglitsch, S. Bounissou, O. Adami, J Low Temp Phys 193, 655–660 (2018). https://doi.org/10.1007/s10909-018-1919-y

    Article  ADS  Google Scholar 

  4. V. Goudon, A. Aliane, W. Rabaud, C. Vialle, S. Pocas, E. Baghe, L. Dussopt, P. Agnese, N. Lio Soon Shun, S. Becker, V. Reveret, J.L. Sauvageot, L. Rodriguez, M. Solana, Saminadayar L. Nucl. Instrum. Methods A 912, 78–81 (2018). https://doi.org/10.1016/j.nima.2017.10.057

    Article  ADS  Google Scholar 

  5. A.L. Efros, B.I. Shklovskii, J. Phys. C 8, L49 (1975). https://doi.org/10.1088/0022-3719/8/4/003

    Article  ADS  Google Scholar 

  6. M. Galeazzi, D. Liu, D. McCammon et al., Phys. Rev. B76, 155207 (2007). https://doi.org/10.1103/PhysRevB.76.155207

    Article  ADS  Google Scholar 

  7. O.-A. Adami, L. Rodriguez, A. Poglitsch, S. Bounissou, V. Reveret, A. Aliane, V. Goudon, L. Dussopt, Appl. Opt. 58, 398–403 (2019). https://doi.org/10.1364/AO.58.000398

    Article  ADS  Google Scholar 

  8. A. Aliane, J-L. Sauvageot, X. De La Broïse, C. Pigot, J. Martignac, E. Grémion, V. Szeflinski, J. Goupy, P. Agnese, in SPIE Proceedingd, vo, 7732, Article number 77321O, (2010). Doi: https://doi.org/10.1117/12.856878

  9. P.M. Downey, A.D. Jeffries, S.S. Meyer, R. Weiss, F.J. Bachner, J.P. Donnelly, W.T. Lindley, R.W. Mountain, D.J. Silversmith, Appl. Opt. 23, 910–914 (1984)

    Article  ADS  Google Scholar 

  10. O.-A. Adami, L. Rodriguez, V. Reveret, A. Aliane, A. Poglitsch, J.-L. Sauvageot, S. Bounissou, V. Goudon, L. Dussopt, J. Low Temp. Phys. 193, 415–421 (2018). https://doi.org/10.1007/s10909-018-1993-1

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank A. Charpentier, O. Girard, P. Sixt, N. Bernard-Henriques from CEA-TECH (Grenoble, France) for their help during the samples fabrication. This work has been partially supported by the LabEx FOCUS ANR-11-LABX-0013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Aliane.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliane, A., Adami, OA., Dussopt, L. et al. Design, Simulation and Fabrication of Highly Sensitive Cooled Silicon Bolometers for Millimeter-Wave Detection. J Low Temp Phys 199, 56–64 (2020). https://doi.org/10.1007/s10909-020-02405-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02405-6

Keywords

Navigation