Skip to main content
Log in

The CROSS Experiment: Rejecting Surface Events by PSD Induced by Superconducting Films

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Neutrinoless double-beta (\(0\nu \beta \beta\)) decay is a hypothetical rare nuclear transition (\(T_{1/2}>10^{25}\)\(10^{26}\) year). Its observation would provide an important insight into the nature of neutrinos (Dirac or Majorana particle) demonstrating that the lepton number is not conserved. This decay can be investigated with bolometers embedding the double-beta decay isotope (\(^{76}\mathrm{Ge}\), \(^{82}\mathrm{Se}\), \(^{100}\mathrm{Mo}\), \(^{116}\mathrm{Cd}\), \(^{130}\mathrm{Te}\)...), which perform as low-temperature calorimeters (few tens of mK) detecting particle interactions via a small temperature rise read out by a dedicated thermometer. Cryogenic Rare-event Observatory with Surface Sensitivity (CROSS) aims at the development of bolometric detectors (based on \(\hbox {Li}_{{2}}\hbox {MoO}_{{4}}\) and \(\hbox {TeO}_{{2}}\) crystals) capable of discriminating surface \(\alpha\) and \(\beta\) interactions by exploiting superconducting properties of Al film deposited on the detector surface. We report in this paper the results of tests on prototypes performed at CSNSM (Orsay, France) that showed the capability of a-few-\(\upmu \mathrm{m}\)-thick superconducting Al film deposited on crystal surface to discriminate surface \(\alpha\) from bulk events, thus providing the detector with the required pulse shape discrimination capability. The CROSS technology would further improve the background suppression and simplify the detector construction (no auxiliary light detector is needed to reject alpha surface events) with a view to future competitive double-beta decay searches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S. Dell’Oro, S. Marcocci, M. Viel, F. Vissani, Adv. High Energy Phys. 2016, 2162659 (2016). https://doi.org/10.1155/2016/2162659

    Article  Google Scholar 

  2. V.I. Tretyak, YuG Zdesenko, Atom. Data Nucl. Data Table 80, 83 (2002). https://doi.org/10.1006/adnd.2001.0873

    Article  ADS  Google Scholar 

  3. M.J. Dolinski, A.W.P. Poon, W. Rodejohann, Ann. Rev. Nucl. Part. Sci. 69, 219 (2019). https://doi.org/10.1146/annurev-nucl-101918-023407

    Article  ADS  Google Scholar 

  4. D. Poda, A. Giuliani, Int. J. Mod. Phys. A 32, 1743012 (2017). https://doi.org/10.1142/S0217751X17430126

    Article  ADS  Google Scholar 

  5. S. Pirro et al., Phys. At. Nucl. 69, 2109 (2006). https://doi.org/10.1134/S1063778806120155

    Article  Google Scholar 

  6. T. Tabarelli de Fatis, Eur. Phys. J. C 65, 359 (2010). https://doi.org/10.1140/epjc/s10052-009-1207-8

    Article  ADS  Google Scholar 

  7. E. Armengaud et al., Eur. Phys. J. C 77, 785 (2017). https://doi.org/10.1140/epjc/s10052-017-5343-2

    Article  ADS  Google Scholar 

  8. D.V. Poda et al., AIP Conf. Proc. 1894, 020017 (2017). https://doi.org/10.1063/1.5007642

    Article  Google Scholar 

  9. CUORE Collaboration, C. Alduino et al., Phys. Rev. Lett.120, 132501, (2018), https://doi.org/10.1103/PhysRevLett.120.132501

  10. CUORE Collaboration, F. Alessandria et al., Astropart. Phys.35, 839, (2012), https://doi.org/10.1016/j.astropartphys.2012.02.008

  11. I.C. Bandac et al., JHEP 01, 018 (2020). https://doi.org/10.1007/JHEP01(2020)018

    Article  ADS  Google Scholar 

  12. L. Dumoulin, L. Bergé, J. Lesueur, H. Bernas, M. Chapellier, J. Low Temp. Phys. 93, 301 (1993). https://doi.org/10.1007/BF00693437

    Article  ADS  Google Scholar 

  13. O. Crauste et al., J. Low Temp. Phys. 163, 60 (2011). https://doi.org/10.1007/s10909-010-0284-2

    Article  ADS  Google Scholar 

  14. E.E. Haller, N.P. Palaio, M. Rodder, W.L. Hansen, E. Kreysa, Neutron Transmutat. Dop. Semicond. Mater. (1984). https://doi.org/10.1007/978-1-4613-2695-3_2

    Article  Google Scholar 

  15. R. Orbach, L.A. Vredevoe, Phys. Phys. Fiz. 1, 91 (1964). https://doi.org/10.1103/PhysicsPhysiqueFizika.1.91

    Article  MathSciNet  Google Scholar 

  16. A. Alessandrello et al., Nucl. Instrum. Meth. A 412, 454 (1998). https://doi.org/10.1016/S0168-9002(98)00458-6

    Article  ADS  Google Scholar 

  17. C. Nones et al., J. Low Temp. Phys. 167, 1029 (2012). https://doi.org/10.1007/s10909-012-0558-y

    Article  ADS  Google Scholar 

  18. C. Arnaboldi et al., Astropart. Phys. 34, 797 (2011). https://doi.org/10.1016/j.astropartphys.2011.02.006

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The project CROSS is funded by the European Research Council (ERC) under the European-Union Horizon 2020 program (H2020/2014-2020) with the ERC Advanced Grant no. 742345 (ERC-2016-ADG). The PhD fellowship of H. Khalife has been partially funded by the P2IO LabEx (ANR-10-LABX-0038) managed by the Agence Nationale de la Recherche (France) in the framework of the 2017 P2IO doctoral call.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Khalife.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalife, H., Bergé, L., Chapellier, M. et al. The CROSS Experiment: Rejecting Surface Events by PSD Induced by Superconducting Films. J Low Temp Phys 199, 19–26 (2020). https://doi.org/10.1007/s10909-020-02369-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02369-7

Keywords

Navigation