Skip to main content
Log in

Niobium Nitride Thin Films for Very Low Temperature Resistive Thermometry

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We investigate thin-film resistive thermometry based on metal-to-insulator transition (niobium nitride) materials down to very low temperature. The variation of the NbN thermometer resistance has been calibrated versus temperature and magnetic field. High sensitivity in temperature variation detection is demonstrated through efficient temperature coefficient of resistance. The nitrogen content of the niobium nitride thin films can be tuned to adjust the optimal working temperature range. In the present experiment, we show the versatility of the NbN thin-film technology through applications in very different low-temperature use cases. We demonstrate that thin-film resistive thermometry can be extended to temperatures below 30 mK with low electrical impedance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. F. Giazotto, T.T. Heikkila, A. Luukanen, A.M. Savin, J.P. Pekola, Rev. Mod. Phys. 78, 217 (2006)

    Article  ADS  Google Scholar 

  2. C. Enss, D. McCammon, J. Low Temp. Phys. 151, 5 (2008)

    Article  ADS  Google Scholar 

  3. G. Pickett, C. Enss, Nat. Rev. Mater. 3, 18012 (2018)

    Article  ADS  Google Scholar 

  4. G. Schuster, D. Hechtfischer, B. Fellmuth, Rep. Prog. Phys. 57, 187–230 (1994)

    Article  ADS  Google Scholar 

  5. L.G. Rubin, Cryogenics 37, 341 (1997)

    Article  ADS  Google Scholar 

  6. J. Fischer, B. Fellmuth, Rep. Prog. Phys. 68, 1043 (2005)

    Article  ADS  Google Scholar 

  7. D. Querlioz, E. Helgren, D.R. Queen, F. Hellman, R. Islam, D.J. Smith, Appl. Phys. Lett. 87, 221901 (2005)

    Article  ADS  Google Scholar 

  8. S. Tagliati, V.M. Krasnov, A. Rydh, Rev. Sci. Instrum. 83, 055107 (2012)

    Article  ADS  Google Scholar 

  9. E. Olivieri, M. Rotter, M. De Combarieu, P. Forget, C. Marrache-Kikuchi, P. Pari, Cryogenics 72, 148 (2015)

    Article  ADS  Google Scholar 

  10. P. Swinehart, S.S. Courts, D.S. Holmes, Metal oxy-nitride resistance films and methods of making the same. U.S. Patent 5367285, issued 22 Nov (1994)

  11. Z. Lin, G. Zhan, M. You, B. Yang, X. Chen, X. Wang, W. Zhang, J. Liu, Appl. Phys. Lett. 113, 133504 (2018)

    Article  ADS  Google Scholar 

  12. P.A. Lee, T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985)

    Article  ADS  Google Scholar 

  13. T.I. Baturina, AYu. Mironov, V.M. Vinokur, M.R. Baklanov, C. Strunk, Phys. Rev. Lett. 99, 257003 (2007)

    Article  ADS  Google Scholar 

  14. M. Ovadia, B. Sacépé, D. Shahar, Phys. Rev. Lett. 102, 176802 (2009)

    Article  ADS  Google Scholar 

  15. O. Crauste, C.A. Marrache-Kikuchi, L. Berge, S. Collin, Y. Dolgorouky, S. Marnieros, C. Nones, L. Dumoulin, J. Low Temp. Phys. 163, 60 (2011)

    Article  ADS  Google Scholar 

  16. M. Pollak, M. Ortuño, A. Frydman, The Electron Glass (Cambridge University Press, Cambridge, 2013)

  17. F. Couedo, O. Crauste, A.A. Drillien, V. Humbert, L. Berge, C.A. Marrache-Kikuchi, L. Dumoulin, Sci. Rep. 6, 35834 (2016)

    Article  ADS  Google Scholar 

  18. O. Bourgeois, E. André, C. Macovei, J. Chaussy, Rev. Sci. Instrum. 77, 126108 (2006)

    Article  ADS  Google Scholar 

  19. O. Bourgeois, T. Fournier, J. Chaussy, J. Appl. Phys. 101, 016104 (2007)

    Article  ADS  Google Scholar 

  20. J.-S. Heron, T. Fournier, N. Mingo, O. Bourgeois, Nano Lett. 9, 1861 (2009)

    Article  ADS  Google Scholar 

  21. M.C. Wingert, Z.C.Y. Chen, S. Kwon, J. Xiang, R.K. Chen, Rev. Sci. Instrum. 83, 024901 (2012)

    Article  ADS  Google Scholar 

  22. A. Sikora, H. Ftouni, J. Richard, C. Hébert, D. Eon, F. Omnès, O. Bourgeois, Rev. Sci. Instrum. 83, 054902 (2012)

    Article  ADS  Google Scholar 

  23. A. Sikora, H. Ftouni, J. Richard, C. Hébert, D. Eon, F. Omnès, O. Bourgeois, Rev. Sci. Instrum. 84, 029901 (2013)

    Article  ADS  Google Scholar 

  24. C. Blanc, A. Rajabpour, S. Volz, T. Fournier, O. Bourgeois, Appl. Phys. Lett. 103, 043109 (2013)

    Article  ADS  Google Scholar 

  25. A. Tavakoli, K. Lulla, T. Crozes, E. Collin, O. Bourgeois, Nat. Commun. 9, 4287 (2018)

    Article  ADS  Google Scholar 

  26. F. Ong, O. Bourgeois, Europhys. Lett. 79, 67003 (2007)

    Article  ADS  Google Scholar 

  27. A.F. Lopeandia, E. André, J.-L. Garden, D. Givord, O. Bourgeois, Rev. Sci. Instrum. 81, 053901 (2010)

    Article  ADS  Google Scholar 

  28. G.M. Souche, J. Huillery, H. Pothier, P. Gandit, J.I. Mars, S.E. Skipetrov, O. Bourgeois, Phys. Rev. B 87, 115120 (2013)

    Article  ADS  Google Scholar 

  29. S. Poran, T. Nguyen-Duc, A. Auerbach, N. Dupuis, A. Frydman, O. Bourgeois, Nat. Commun. 8, 14464 (2017)

    Article  ADS  Google Scholar 

  30. W.A. Bosch, A. Chinchure, J. Flokstra, G.E. de Groot, M.J. de Groot, E. van Heumen, R. Jochemsen, F. Mathu, A. Peruzzi, D. Veldhuis, Phys. B 329, 1562 (2003)

    Article  ADS  Google Scholar 

  31. J.P. Pekola, K.P. Hirvi, J.P. Kauppinen, M.A. Paalanen, Phys. Rev. Lett. 73, 2903 (1994)

    Article  ADS  Google Scholar 

  32. J.P. Pekola, J.K. Suoknuuti, J.P. Kauppinen, M. Weiss, P.V.D. Linden, A.G.M. Jansen, J. Low Temp. Phys. 128, 263 (2002)

    Article  ADS  Google Scholar 

  33. N. Fortune, G. Gossett, L. Peabody, K. Lehe, S. Uji, H. Aoki, Rev. Sci. Instrum. 71, 3825 (2000)

    Article  ADS  Google Scholar 

  34. B. Zhang, J.S. Brooks, J.A.A.J. Perenboom, S.-Y. Han, J.S. Qualls, Rev. Sci. Instrum. 70, 2026 (1999)

    Article  ADS  Google Scholar 

  35. V. Humbert, Study of accessible ground states in two-dimensional disordered superconductors, PhD thesis, University of Paris-Sud (2016)

  36. E.T. Swartz, R.O. Pohl, Rev. Mod. Phys. 61, 605 (1989)

    Article  ADS  Google Scholar 

  37. https://hdleiden.home.xs4all.nl/srd1000/

  38. The MMR3 resistance bridge has been developed at the Institut Néel and is now licenced to Cryoconcept

Download references

Acknowledgements

We thank the micro- and nanofabrication facilities of Institut Néel CNRS: the Pôle Capteurs Thermométriques et Calorimétrie, Nanofab for their help in the preparation of the samples and the experiments. We have also benefited from the support of the Pole Cryogenie and Pole Electronique. The research leading to these results has received funding from the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement No. 824109, the European Microkelvin Platform (EMP), the EU project MERGING Grant No. 309150, ERC CoG Grant ULT-NEMS No. 647917; the authors also acknowledge the financial support from the ANR Project QNM Grant No. 040401, the Laboratoire d’excellence LANEF in Grenoble (ANR-10-LABX-51-01), the ANR project Tiptop ANR-16-CE09-0023; PDG acknowledges funding from Innovation Programme under the Marie Skłodowska-Curie Grant Agreement No. 754303 and the Fondation des Nanosciences (FCSN 2018 02D), and AR from Erasmus EU programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Bourgeois.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T., Tavakoli, A., Triqueneaux, S. et al. Niobium Nitride Thin Films for Very Low Temperature Resistive Thermometry. J Low Temp Phys 197, 348–356 (2019). https://doi.org/10.1007/s10909-019-02222-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02222-6

Keywords

Navigation