Skip to main content
Log in

Thermodynamic Properties of a GaAs Quantum Dot with an Effective-Parabolic Potential: Theory and Simulation

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this work, we have studied the thermodynamic properties of a GaAs quantum dot (QD) with an effective-parabolic potential. We have analytically obtained entropy, heat capacity and average energy of the QD in the presence of a magnetic field and its interaction with the electron spin using the canonical ensemble approach. According to the results, it is found that the entropy is an increasing function of temperature. At low temperatures, the entropy increases monotonically with increasing the temperature for all values of the magnetic field and it is independent of the magnetic field. But, the entropy depends on the magnetic field at high temperatures. The entropy is also decreased with increasing magnetic field. The average energy of the system is increased by enhancing temperature and magnetic field. At low temperatures, the average energy appears weakly dependent on magnetic field. It is nearly independent of magnetic field. The heat capacity increases with enhancing temperatures for all considered values of magnetic fields, and it approaches a saturation value at high temperatures. The heat capacity decreases with increasing the magnetic field for all considered values of temperatures. There is an interesting behavior in heat capacity as a function of magnetic field. The heat capacity does not change much at high temperatures like T = 200 K and 300 K. However, at relatively lower temperatures like T = 100 K, the heat capacity reduces with increasing magnetic field. We have also calculated the magnetization of the system. The magnitude of the magnetization \( \left( {\left| M \right|} \right) \) increases with the magnetic field and the confinement range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. U. Woggon, Optical Properties of Semiconductor Quantum Dots (Springer, Berlin, 1997)

    Google Scholar 

  2. M.A. Kastner, Rev. Mod. Phys. 64, 849 (1992)

    Article  ADS  Google Scholar 

  3. N.F. Johnson, J. Phys. Condens. Matter 7, 965 (1995)

    Article  ADS  Google Scholar 

  4. N. Rosen, P.M. Morse, Phys. Rev. 42, 210 (1932)

    Article  ADS  Google Scholar 

  5. R. Khordad, B. Mirhosseini, Commun. Theor. Phys. 62, 77 (2014)

    Article  ADS  Google Scholar 

  6. M. Sundaram, S.A. Chalmers, P.E. Hopkins, A.C. Gossard, Science 254, 1326 (1991)

    Article  ADS  Google Scholar 

  7. J. Adamowski, A. Kwasniowski, B. Szafran, J. Phys. Condens. Matter 17, 4489 (2005)

    Article  ADS  Google Scholar 

  8. J. Adamowski, M. Sobkowicz, B. Szafran, S. Bednarek, Phys. Rev. B 62, 4234 (2000)

    Article  ADS  Google Scholar 

  9. W. Xie, Physica B 403, 2828 (2008)

    Article  ADS  Google Scholar 

  10. W. Xie, Phys. Status Solidi B 245, 101 (2008)

    Article  ADS  Google Scholar 

  11. M. Ciurla, J. Adamowski, B. Szafran, S. Bednarek, Physica E 15, 261 (2002)

    Article  ADS  Google Scholar 

  12. A. Gharaati, R. Khordad, Superlattices Microstruct. 48, 276 (2010)

    Article  ADS  Google Scholar 

  13. C.S. Jia, C.W. Wang, L.H. Zhang, X.L. Peng, R. Zeng, X.T. You, Chem. Phys. Lett. 676, 150 (2017)

    Article  ADS  Google Scholar 

  14. C.S. Jia, L.H. Zhang, C.W. Wang, Chem. Phys. Lett. 667, 211 (2017)

    Article  ADS  Google Scholar 

  15. X.Q. Song, C.W. Wang, C.S. Jia, Chem. Phys. Lett. 673, 50 (2017)

    Article  ADS  Google Scholar 

  16. P.Q. Wang, L.H. Zhang, C.S. Jia, J.Y. Liu, J. Mol. Spectros. 274, 5 (2012)

    Article  ADS  Google Scholar 

  17. R. Khordad, A. Ghanbari, Comput. Theor. Chem. 1155, 1 (2019)

    Article  Google Scholar 

  18. W. Yang, J.X. Sun, F. Yu, Eur. Phys. J. B 71, 211 (2009)

    Article  ADS  Google Scholar 

  19. R. Khordad, H.R. Rastegar Sedehi, J. Low Temp. Phys. 190, 200 (2018)

    Article  ADS  Google Scholar 

  20. F.M. Gashimzade, A.M. Babaev, K.A. Gasanov, Fizika 8, 28 (2002)

    Google Scholar 

  21. B. Boyacioglu, A. Chatterjee, J. Appl. Phys. 112, 083514 (2012)

    Article  ADS  Google Scholar 

  22. H.M. Muller, S.E. Koonin, Phys. Rev. B 54, 14532 (1996)

    Article  ADS  Google Scholar 

  23. G.B. Ibramgimov, Fizika 3, 35 (2003)

    Google Scholar 

  24. J.C. Oh, K.J. Chang, G. Ihm, S.J. Lee, J. Korean Phys. Soc. 28, 132 (1995)

    Google Scholar 

  25. N.T.T. Nguyen, F.M. Peeters, Phys. Rev. B 78, 045321 (2008)

    Article  ADS  Google Scholar 

  26. P.A. Maksym, T. Chakraborty, Phys. Rev. Lett. 65, 108 (1990)

    Article  ADS  Google Scholar 

  27. S. Mukhopadhyaya, B. Boyacioglu, M. Saglam, A. Chatterjee, Physica E 40, 2776 (2008)

    Article  ADS  Google Scholar 

  28. B. Boyacioglu, A. Chatterjee, Int. J. Mod. Phys. B 26, 1250018 (2012)

    Article  ADS  Google Scholar 

  29. M.S. Atoyan, E.M. Kazaryan, H.A. Sarkisyan, Physica E 31, 83 (2006)

    Article  ADS  Google Scholar 

  30. L.D. Landau, E.M. Lifshitz, Statistical Physics ( Pergamon International Library, Oxford, 1975)

    MATH  Google Scholar 

  31. A.G. Mikhalchuk, K.S. White, H.M. Bozler, C.M. Gould, J. Low Temp. Phys. 121, 309 (2000)

    Article  ADS  Google Scholar 

  32. R. Khordad, Mod. Phys. Lett. B 29, 1550127 (2015)

    Article  ADS  Google Scholar 

  33. S.F. Pugh, Philos. Mag. 45, 823 (1954)

    Article  Google Scholar 

  34. B. Xiao, J.D. Xing, S.F. Ding, W. Su, Physica B 403, 1723 (2008)

    Article  ADS  Google Scholar 

  35. C.T. Zhou, J.D. Xing, B. Xiao, J. Feng, X.J. Xie, Y.H. Chen, Comput. Mater. Sci. 44, 1056 (2009)

    Article  Google Scholar 

  36. F.D. Khodja, A. Boudali, K. Amara, B. Amrani, A. Kadoun, B. Abbar, Physica B 23, 4305 (2008)

    Article  Google Scholar 

  37. D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)

    Article  ADS  Google Scholar 

  38. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  39. M.M. Mirhosseini, R. Khordad, Eur. Phys. J. Plus 131, 239 (2016)

    Article  Google Scholar 

  40. M.M. Mirhosseini, M. Rahmati, S.S. Zargarian, R. Khordad, J. Mol. Struct. 1141, 441 (2017)

    Article  ADS  Google Scholar 

  41. R. Khordad, B. Mirhosseini, M.M. Mirhosseini, Iran. J. Sci. Technol. Trans. Sci. 42, 2355 (2018)

    Article  Google Scholar 

  42. J.I. Climente, J. Planelles, J.L. Movilla, Phys. Rev. B 70, 081301(R) (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Khordad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We know that \( H = H_{0} + H_{1} \). To obtain the total Hamiltonian, we add Eqs. (6) and (8) as

$$ H = - \frac{{\hbar^{2} }}{{2m^{*} }}\nabla_{r}^{2} + \frac{1}{2}m^{*} \varOmega^{2} r^{2} + \frac{1}{2}\hbar \omega_{c} \left( {\hat{L}_{z} + g\hat{S}_{z} } \right) - V_{0} + \alpha \left[ {\frac{{V_{0} }}{{r^{2} }} - \frac{1}{2}m^{*} \omega^{2} - \frac{{V_{0} }}{{r^{2} }}\text{sech}^{2} \left( {\frac{r}{R}} \right)} \right]r^{2} $$
(A1)

Therefore, we have

$$ H = - \frac{{\hbar^{2} }}{{2m^{*} }}\nabla_{r}^{2} + \frac{1}{2}m^{*} \varOmega^{2} r^{2} - \alpha \frac{1}{2}m^{*} \omega^{2} r^{2} + \frac{1}{2}\hbar \omega_{c} \left( {\hat{L}_{z} + g\hat{S}_{z} } \right) - V_{0} + \alpha \frac{{V_{0} }}{{r^{2} }}r^{2} - \alpha \frac{{V_{0} }}{{r^{2} }}r^{2} \left\langle {\text{sech}^{2} \left( {\frac{r}{R}} \right)} \right\rangle $$
(A2)

Using the relation \( \varOmega^{2} = \omega^{2} + \frac{{\omega_{c}^{2} }}{4} \), the second and third terms can be written as

$$ \frac{1}{2}m^{*} \varOmega^{2} r^{2} - \alpha \frac{1}{2}m^{*} \omega^{2} r^{2} = \frac{1}{2}m^{*} r^{2} \left[ {\varOmega^{2} - \alpha \omega^{2} } \right] = \frac{1}{2}m^{*} r^{2} \left[ {\left( {1 - \alpha } \right)\omega^{2} + \frac{{\omega_{c}^{2} }}{4}} \right] $$
(A3)

Now, we should calculate the expectation value \( r^{2} \) and \( \left\langle {\text{sech}^{2} \left( {\frac{r}{R}} \right)} \right\rangle \) with respect to ground state wave function of the harmonic oscillator of frequency \( \varOmega \). After obtaining the expectation values, we have inserted the values in Eq. (A2). Thus, we obtain the following equation

$$ H = - \frac{1}{{2m^{*} }}\nabla^{2} + \frac{1}{2}m^{*} \varpi^{2} r^{2} + \frac{1}{2}\hbar \omega_{c} \left( {\hat{L}_{z} + g\hat{S}_{z} } \right) - V_{0} $$

where

$$ \varpi^{2} = \left[ {\left( {1 - \alpha } \right)\omega^{2} + \frac{{\omega_{c}^{2} }}{4} + 2\alpha V_{0} \frac{\varOmega }{{\hbar + m^{*} \varOmega R^{2} }}} \right]. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khordad, R., Mirhosseini, B. & Mirhosseini, M.M. Thermodynamic Properties of a GaAs Quantum Dot with an Effective-Parabolic Potential: Theory and Simulation. J Low Temp Phys 197, 95–110 (2019). https://doi.org/10.1007/s10909-019-02218-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02218-2

Keywords

Navigation