Skip to main content
Log in

The Effects of Three Magnons Interactions in the Magnon-Density Waves of Triangular Spin Lattices

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We investigate the magnon-density waves proposed as the longitudinal excitations in triangular lattice antiferromagnets by including the cubic and quartic corrections in the large-s expansion. The longitudinal excitation spectra for the two-dimensional (2D) triangular antiferromagnetic model and quasi-one-dimensional (quasi-1D) antiferromagnetic materials have been obtained for a general quantum spin number s. For the 2D triangular lattice model, we find a significant reduction (about 40%) in the energy spectra at the zone boundaries due to both the cubic and quartic corrections. For the quasi-1D antiferromagnets, since the cubic term comes from the very weak couplings on the hexagonal planes, they make very little correction to the energy spectra, whereas the major correction contribution comes from the quartic terms in the couplings along the chains with the numerical values for the energy gaps in good agreement with the experimental results as reported earlier (Merdan and Xian in Phys Rev B 87:174434, 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. F.D.M. Haldane, Phys. Rev. Lett. 50, 1153 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  2. W.J.L. Buyers et al., Phys. Rev. Lett. 56, 371 (1986)

    Article  ADS  Google Scholar 

  3. L.P. Regnault, I. Zaliznyak, J.P. Renard, C. Vettier, Phys. Rev. B 50, 9174 (1994)

    Article  ADS  Google Scholar 

  4. S. Ma, C. Broholm, D.H. Reich, B.J. Sternlieb, R.W. Erwin, Phys. Rev. Lett. 69, 3571 (1992)

    Article  ADS  Google Scholar 

  5. M. Steiner, K. Kakurai, J.K. Kjems, D. Petitgrand, R. Pynn, J. Appl. Phys. 61, 3953 (1987)

    Article  ADS  Google Scholar 

  6. M. Kenzelmann et al., Phys. Rev. Lett. 87, 17201 (2001)

    Article  ADS  Google Scholar 

  7. E.S. Sørensen, I. Affleck, Phys. Rev. B 49, 13235 (1994)

    Article  ADS  Google Scholar 

  8. O. Golinelli, T. Jolicoeur, R. Lacaze, Phys. Rev. B 46, 10854 (1992)

    Article  ADS  Google Scholar 

  9. S. Yamamoto, Phys. Rev. Lett. 75, 3348 (1995)

    Article  ADS  Google Scholar 

  10. J. Deisz, M. Jarrell, D.L. Cox, Phys. Rev. B 48, 10227 (1993)

    Article  ADS  Google Scholar 

  11. M. Takahashi, Phys. Rev. Lett. 62, 2313 (1989)

    Article  ADS  Google Scholar 

  12. I. Affleck, Phys. Rev. Lett. 62, 474 (1989)

    Article  ADS  Google Scholar 

  13. I. Affleck, G.F. Wellman, Phys. Rev. B 46, 8934 (1992)

    Article  ADS  Google Scholar 

  14. P.W. Anderson, Mater. Res. Bull. 8, 153 (1973)

    Article  Google Scholar 

  15. P. Fazekas, P.W. Anderson, Philos. Mag. 30, 423 (1974)

    Article  ADS  Google Scholar 

  16. V. Kalmeyer, R.B. Laughlin, Phys. Rev. Lett. 59, 2095 (1987)

    Article  ADS  Google Scholar 

  17. J. Richter, J. Schulenburg, A. Honecker, Quantum magnetism in two dimensions: from semi-classical Néel order to magnetic disorder, in Quantum Magnetism, ed. by U. Schollwöck, J. Richter, D. Farnell, R. Bishop, Volume 645 of Lecture Notes in Physics, (Springer, Berlin, Heidelberg, 2004), pp. 85–153

  18. J. Parkinson, D. Farnell, Quantum magnetism, in An Introduction to Quantum Spin Systems, Volume 816 of Lecture Notes in Physics (Springer, Berlin, Heidelberg, 2010), pp. 135–152

  19. D.A. Huse, V. Elser, Phys. Rev. Lett. 60, 2531 (1988)

    Article  ADS  Google Scholar 

  20. T. Jolicoeur, J.C. Le Guillou, Phys. Rev. B 40, 2727 (1989)

    Article  ADS  Google Scholar 

  21. R.R.P. Singh, D.A. Huse, Phys. Rev. Lett. 68, 1766 (1992)

    Article  ADS  Google Scholar 

  22. S.J. Miyake, J. Phys. Soc. Jpn. 61, 983 (1992)

    Article  ADS  Google Scholar 

  23. B. Bernu, C. Lhuillier, L. Pierre, Phys. Rev. Lett. 69, 2590 (1992)

    Article  ADS  Google Scholar 

  24. P. Azaria, B. Delamotte, D. Mouhanna, Phys. Rev. Lett. 70, 2483 (1993)

    Article  ADS  Google Scholar 

  25. N. Elstner, R.R.P. Singh, A.P. Young, Phys. Rev. Lett. 71, 1629 (1993)

    Article  ADS  Google Scholar 

  26. A.V. Chubukov, S. Sachdev, T. Senthil, J. Phys. Condens. Matter 6, 8891 (1994)

    Article  ADS  Google Scholar 

  27. L.O. Manuel, A.E. Trumper, H.A. Ceccatto, Phys. Rev. B 57, 8348 (1998)

    Article  ADS  Google Scholar 

  28. A.E. Trumper, L. Capriotti, S. Sorella, Phys. Rev. B 61, 11529 (2000)

    Article  ADS  Google Scholar 

  29. F. Mezzacapo, J.I. Cirac, New J. Phys. 12, 103039 (2010)

    Article  ADS  Google Scholar 

  30. F.J. Dyson, Phys. Rev. 102, 1217 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  31. T. Oguchi, Phys. Rev. 117, 117 (1960)

    Article  ADS  Google Scholar 

  32. M. Mourigal, W.T. Fuhrman, A.L. Chernyshev, M.E. Zhitomirsky, Phys. Rev. B 88, 094407 (2013)

    Article  ADS  Google Scholar 

  33. M.E. Zhitomirsky, A.L. Chernyshev, Rev. Mod. Phys. 85, 219 (2013)

    Article  ADS  Google Scholar 

  34. J.M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University Press, Oxford, 1960)

    MATH  Google Scholar 

  35. E.M. Lifshitz, L.P. Pitaevskii, Statistical Physics Part 2, Landau and Lifshitz Course of Theoretical Physics (Pergamon Press, Oxford, 1980)

    Google Scholar 

  36. S.J. Miyake, Prog. Theor. Phys. 74, 468 (1985)

    Article  ADS  Google Scholar 

  37. T. Ohyama, H. Shiba, J. Phys. Soc. Jpn. 62, 3277 (1993)

    Article  ADS  Google Scholar 

  38. M.E. Zhitomirsky, T. Nikuni, Phys. Rev. B 57, 5013 (1998)

    Article  ADS  Google Scholar 

  39. Y. Xian, Phys. Rev. B 74, 212401 (2006)

    Article  ADS  Google Scholar 

  40. R.P. Feynman, Phys. Rev. 94, 262 (1954)

    Article  ADS  Google Scholar 

  41. M. Merdan, Y. Xian, Phys. Rev. B 87, 174434 (2013)

    Article  ADS  Google Scholar 

  42. Y. Xian, M. Merdan, J. Phys. Conf. Ser. 529, 012020 (2014)

    Article  Google Scholar 

  43. M. Merdan, Y. Xian, J. Low Temp. Phys. 171, 797 (2012)

    Article  ADS  Google Scholar 

  44. A. Chernyshev, M. Zhitomirsky, Phys. Rev. B 79, 144416 (2009)

    Article  ADS  Google Scholar 

  45. R.P. Feynman, M. Cohen, Phys. Rev. 102, 1189 (1956)

    Article  ADS  Google Scholar 

  46. Y. Xian, J. Phys. Condens. Matter 19, 216221 (2007)

    Article  ADS  Google Scholar 

  47. Y. Xian, J. Phys. Condens. Matter 23, 346003 (2011)

    Article  ADS  Google Scholar 

  48. Z. Tun, W.J.L. Buyers, A. Harrison, J.A. Rayne, Phys. Rev. B 43, 13331 (1991)

    Article  ADS  Google Scholar 

  49. A. Harrison, M.F. Collins, J. Abu-Dayyeh, C.V. Stager, Phys. Rev. B 43, 679 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Merdan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merdan, M., Xian, Y. The Effects of Three Magnons Interactions in the Magnon-Density Waves of Triangular Spin Lattices. J Low Temp Phys 197, 81–94 (2019). https://doi.org/10.1007/s10909-019-02217-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02217-3

Keywords

Navigation