Skip to main content
Log in

Metastable Phases of Liquid and Solid \(^4\)He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Experiments and theories describing the metastable phases of liquid and solid \(^4\)He are presented and discussed. For the case of metastable liquid \(^4\)He with respect to its gaseous phase, it is shown that different measurements of its destabilization threshold (cavitation threshold) and their comparisons to available theories reveal that the nucleation mechanism is not totally understood. Then experiments measuring typical lifetime of cavitation bubbles in He I and He II are shortly considered showing the important role of heat transport mechanism during their collapse. Finally for liquid \(^4\)He, its metastability with respect to its solid phase and the possibility of the liquid destabilization due to the vanishing of the roton gap is presented. The last part of the review is devoted to metastable solid \(^4\)He with respect to its liquid phase. The first experimental production of such a state is described and its destabilization limit possibly invoking the creation and proliferation of crystalline defects is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Two other groups have obtained similar results than Sinha et al. [6] in the same temperature range, these are Semenova et al. [7] and Nishigaki et al. [8].

  2. \(\rho _\mathrm{stat}\) is the static density of liquid \(^4\)He at static pressure \(P_\mathrm{stat}\).

  3. The roton wavelength is close to the average distance between \(^4\)He atoms in the liquid.

  4. Namely the extrapolation of the (\(P_\mathrm{stat},\rho _\mathrm{stat}\cdot V_\mathrm{C}\)) to \(V_\mathrm{C}=0\), \(P_\mathrm{stat},\rho _\mathrm{stat}\) are, respectively, the static pressure and densities of the cell and \(V_\mathrm{C}\) the voltage needed to nucleate a crystal, as explained in Sect. 2.1 for cavitation pressure measurements.

  5. As mentioned by Caupin and Maris in that paper, the thin wall approximation becomes “suspect” at such high pressure where the critical radius of a solid germ is comparable to the interatomic spacing.

  6. Grilly [56] has measured that the quasi isotropic compressibility \(\chi =269\) bar of hcp solid \(^4\)He is relatively independent (maximum of 2% variations) of pressure for pressures between 25 and 27 bar on the melting curve.

  7. It must be noted however that in the Cheng and Beamish experiment [65], the strain rates are about \(10^{-5}\) \(\hbox {s}^{-1}\), far away from the MHz modulation of ref [57].

References

  1. F. Albergamo, J. Bossy, P. Averbuch, H. Schober, H.R. Glyde, Phys. Rev. Lett. 92, 235301 (2004). https://doi.org/10.1103/PhysRevLett.92.235301

    Article  ADS  Google Scholar 

  2. M.S. Bryan, P.E. Sokol, Phys. Rev. B 97, 184511 (2018). https://doi.org/10.1103/PhysRevB.97.184511

    Article  ADS  Google Scholar 

  3. J.V. Pearce, J. Bossy, H. Schober, H.R. Glyde, D.R. Daughton, N. Mulders, Phys. Rev. Lett. 93, 145303 (2004). https://doi.org/10.1103/PhysRevLett.93.145303

    Article  ADS  Google Scholar 

  4. J.A. Nissen, E. Bodegom, L.C. Brodie, J.S. Semura, Phys. Rev. B 40, 6617 (1989). https://doi.org/10.1103/PhysRevB.40.6617

    Article  ADS  Google Scholar 

  5. S. Balibar, J. Low Temp. Phys. 129(5), 363 (2002). https://doi.org/10.1023/A:1021412529571

    Article  ADS  Google Scholar 

  6. D.N. Sinha, J.S. Semura, L.C. Brodie, Phys. Rev. A 26, 1048 (1982). https://doi.org/10.1103/PhysRevA.26.1048

    Article  ADS  Google Scholar 

  7. N.M. Semenova, G.V. Ermakov, J. Low Temp. Phys. 74(1), 119 (1989). https://doi.org/10.1007/BF00681755

    Article  ADS  Google Scholar 

  8. K. Nishgaki, Y. Saji, J. Phys. Soc. Jpn. 52(7), 2293 (1983). https://doi.org/10.1143/JPSJ.52.2293

    Article  ADS  Google Scholar 

  9. S.C. Hall, J. Classen, C.K. Su, H.J. Maris, J. Low Temp. Phys. 101(3), 793 (1995). https://doi.org/10.1007/BF00753392

    Article  ADS  Google Scholar 

  10. M.S. Pettersen, S. Balibar, H.J. Maris, Phys. Rev. B 49, 12062 (1994). https://doi.org/10.1103/PhysRevB.49.12062

    Article  ADS  Google Scholar 

  11. F. Caupin, S. Balibar, Phys. Rev. B 64, 064507 (2001). https://doi.org/10.1103/PhysRevB.64.064507

    Article  ADS  Google Scholar 

  12. C. Appert, C. Tenaud, X. Chavanne, S. Balibar, F. Caupin, D. d’Humières, Eur. Phys. J. B 35(4), 531 (2003). https://doi.org/10.1140/epjb/e2003-00307-0

    Article  ADS  Google Scholar 

  13. A. Qu, A. Trimeche, J. Dupont-Roc, J. Grucker, P. Jacquier, Phys. Rev. B 91(21), 214115 (2015)

    Article  ADS  Google Scholar 

  14. L. Landau, E. Lifshitz, Statistical Physics, 3rd Edition, Chapter 162 (Butterworth-Heinemann, Oxford, 2013)

    Google Scholar 

  15. D.M. Jezek, M. Guilleumas, M. Pi, M. Barranco, J. Navarro, Phys. Rev. B 48, 16582 (1993). https://doi.org/10.1103/PhysRevB.48.16582

    Article  ADS  Google Scholar 

  16. S.C. Hall, H.J. Maris, J. Low Temp. Phys. 107(3), 263 (1997). https://doi.org/10.1007/BF02397457

    Article  ADS  Google Scholar 

  17. G.H. Bauer, D.M. Ceperley, N. Goldenfeld, Phys. Rev. B 61, 9055 (2000). https://doi.org/10.1103/PhysRevB.61.9055

    Article  ADS  Google Scholar 

  18. A. Guirao, M. Centelles, M. Barranco, M. Pi, A. Polls, X. Vinas, J. Phys. Condens. Matter 4(3), 667 (1992). https://doi.org/10.1088/0953-8984/4/3/008

    Article  ADS  Google Scholar 

  19. F. Souris, J. Grucker, J. Dupont-Roc, P. Jacquier, A. Arvengas, F. Caupin, Appl. Optics 49, 6127 (2010)

    Article  ADS  Google Scholar 

  20. A. Qu, Ph.D. thesis, Université Pierre et Marie Curie, Paris, France (2017). https://tel.archives-ouvertes.fr/tel-01591897

  21. H.J. Maris, J. Low Temp. Phys. 94, 125 (1994). https://doi.org/10.1007/BF00755421

    Article  ADS  Google Scholar 

  22. F. Dalfovo, A. Lastri, L. Pricaupenko, S. Stringari, J. Treiner, Phys. Rev. B 52, 1193 (1995). https://doi.org/10.1103/PhysRevB.52.1193

    Article  ADS  Google Scholar 

  23. J. Boronat, J. Casulleras, J. Navarro, Phys. Rev. B 50, 3427 (1994). https://doi.org/10.1103/PhysRevB.50.3427

    Article  ADS  Google Scholar 

  24. H.J. Maris, D.O. Edwards, J. Low Temp. Phys. 129, 1 (2002). https://doi.org/10.1023/A:1020060700534

    Article  ADS  Google Scholar 

  25. G.W. Faris, L.E. Jusinski, A.P. Hickman, J. Opt. Soc. Am. B 10(4), 587 (1993). https://doi.org/10.1364/JOSAB.10.000587

    Article  ADS  Google Scholar 

  26. H. Schubert, P. Leiderer, H. Kinder, J. Low Temp. Phys. 39(3), 363 (1980). https://doi.org/10.1007/BF00115626

    Article  ADS  Google Scholar 

  27. H. Maris, J. Low Temp. Phys. 98(5–6), 403 (1995). https://doi.org/10.1007/BF00752276

    Article  ADS  Google Scholar 

  28. F. Dalfovo, Phys. Rev. B 46, 5482 (1992). https://doi.org/10.1103/PhysRevB.46.5482

    Article  ADS  Google Scholar 

  29. W.H. Zurek, Nature 317, 505 (1985)

    Article  ADS  Google Scholar 

  30. P.C. Hendry, N.S. Lawson, R.A.M. Lee, P.V.E. McClintock, C.D.H. Williams, Nature 368(6469), 315 (1994). https://doi.org/10.1038/368315a0

    Article  ADS  Google Scholar 

  31. M.E. Dodd, P.C. Hendry, N.S. Lawson, P.V.E. McClintock, C.D.H. Williams, Phys. Rev. Lett. 81, 3703 (1998). https://doi.org/10.1103/PhysRevLett.81.3703

    Article  ADS  Google Scholar 

  32. V.B. Efimov, O.J. Griffiths, P.C. Hendry, G.V. Kolmakov, P.V.E. McClintock, L. Skrbek, Phys. Rev. E 74, 056305 (2006). https://doi.org/10.1103/PhysRevE.74.056305

    Article  ADS  Google Scholar 

  33. A. Ganshin, M. Mohazzab, N. Mulders, J. Low Temp. Phys. 134(1), 477 (2004). https://doi.org/10.1023/B:JOLT.0000012598.22534.c3

    Article  ADS  Google Scholar 

  34. P.J. Nacher, J. Dupont-Roc, Phys. Rev. Lett. 67, 2966 (1991). https://doi.org/10.1103/PhysRevLett.67.2966

    Article  ADS  Google Scholar 

  35. X. Chavanne, S. Balibar, F. Caupin, C. Appert, D. d’Humières, J. low Temp. Phys. 126(1–2), 643 (2002)

    Article  ADS  Google Scholar 

  36. M. Blažková, D. Schmoranzer, L. Skrbek, Low Temp. Phys. 34(4), 298 (2008). https://doi.org/10.1063/1.2908890

    Article  ADS  Google Scholar 

  37. M. Blažková, T.V. Chagovets, M. Rotter, D. Schmoranzer, L. Skrbek, J. Low Temp. Phys. 150(3), 194 (2008). https://doi.org/10.1007/s10909-007-9533-4

    Article  ADS  Google Scholar 

  38. A. Qu, A. Trimeche, P. Jacquier, J. Grucker, Phys. Rev. B 93(17), 174521 (2016). https://doi.org/10.1103/PhysRevB.93.174521

    Article  ADS  Google Scholar 

  39. D. Duda, P. Švančara, M. La Mantia, M. Rotter, D. Schmoranzer, O. Kolosov, L. Skrbek, J. Low Temp. Phys. 187(5), 376 (2017). https://doi.org/10.1007/s10909-016-1684-8

    Article  ADS  Google Scholar 

  40. J. Wilks, The Properties of Liquid and Solid Helium (Oxford University Press, Oxford, 1967)

    Google Scholar 

  41. T. Schneider, C.P. Enz, Phys. Rev. Lett. 27, 1186 (1971). https://doi.org/10.1103/PhysRevLett.27.1186

    Article  ADS  Google Scholar 

  42. P. Nozières, J. Low Temp. Phys. 142(1), 91 (2006). https://doi.org/10.1007/s10909-005-9413-8

    Article  ADS  Google Scholar 

  43. L. Vranješ, J. Boronat, J. Casulleras, C. Cazorla, Phys. Rev. Lett. 95, 145302 (2005). https://doi.org/10.1103/PhysRevLett.95.145302

    Article  ADS  Google Scholar 

  44. M. Rossi, E. Vitali, L. Reatto, D.E. Galli, Phys. Rev. B 85, 014525 (2012). https://doi.org/10.1103/PhysRevB.85.014525

    Article  ADS  Google Scholar 

  45. F. Werner, G. Beaume, A. Hobeika, S. Nascimbène, C. Herrmann, F. Caupin, S. Balibar, J. Low Temp. Phys. 136(1), 93 (2004). https://doi.org/10.1023/B:JOLT.0000035372.69378.db

    Article  ADS  Google Scholar 

  46. R. Ishiguro, F. Caupin, S. Balibar, EPL (Europhysics Letters) 75(1), 91 (2006)

    Article  ADS  Google Scholar 

  47. R. Ishiguro, F. Caupin, S. Balibar, J. Low Temp. Phys. 148(5), 645 (2007). https://doi.org/10.1007/s10909-007-9477-8

    Article  ADS  Google Scholar 

  48. H.J. Maris, F. Caupin, J. Low Temp. Phys. 131(1), 145 (2003). https://doi.org/10.1023/A:1022813514979

    Article  ADS  Google Scholar 

  49. A.F. Andreev, I.M. Lifshitz, Sov. Phys. JETP 29, 1107 (1969)

    ADS  Google Scholar 

  50. D.J. Thouless, Ann. Phys. 52, 403 (1969)

    Article  ADS  Google Scholar 

  51. S. Balibar, Nature 464, 176 (2010)

    Article  ADS  Google Scholar 

  52. L. Pollet, M. Boninsegni, A.B. Kuklov, N.V. Prokof’ev, B.V. Svistunov, M. Troyer, Phys. Rev. Lett. 101(9), 097202 (2008). https://doi.org/10.1103/PhysRevLett.101.097202

    Article  ADS  Google Scholar 

  53. R. Crepeau, D. Lee, Phys. Rev. A 6, 516 (1972). https://doi.org/10.1103/PhysRevA.6.516

    Article  ADS  Google Scholar 

  54. F. Souris, Ph.D. thesis, Université Pierre et Marie Curie, Paris, France (2013). https://tel.archives-ouvertes.fr/tel-00942738

  55. F. Souris, J. Grucker, N. Garroum, A. Leclercq, J.M. Isac, J. Dupont-Roc, P. Jacquier, Rev. Sci. Instrum. 85(6), 064902 (2014). https://doi.org/10.1063/1.4881535

    Article  ADS  Google Scholar 

  56. E.R. Grilly, J. Low Temp. Phys. 11(1), 33 (1973). https://doi.org/10.1007/BF00655035

    Article  ADS  Google Scholar 

  57. F. Souris, J. Grucker, J. Dupont-Roc, P. Jacquier, EPL (Europhysics Letters) 95(6), 66001 (2011)

    Article  ADS  Google Scholar 

  58. H.J. Maris, J. Low Temp. Phys. 155(5), 290 (2009). https://doi.org/10.1007/s10909-009-9881-3

    Article  ADS  Google Scholar 

  59. G. Ahlers, Phys. Rev. A 2, 1505 (1970). https://doi.org/10.1103/PhysRevA.2.1505

    Article  ADS  Google Scholar 

  60. W.R. Gardner, J.K. Hoffer, N.E. Phillips, Phys. Rev. A 7, 1029 (1973). https://doi.org/10.1103/PhysRevA.7.1029

    Article  ADS  Google Scholar 

  61. C. Cazorla, J. Boronat, J. Low Temp. Phys. 180(1), 20 (2015). https://doi.org/10.1007/s10909-014-1238-x

    Article  ADS  Google Scholar 

  62. G.V. Sin’ko, N.A. Smirnov, J. Phys. Condens. Matter 14(29), 6989 (2002). https://doi.org/10.1088/0953-8984/14/29/301

    Article  ADS  Google Scholar 

  63. F. Souris, A. Qu, J. Dupont-Roc, J. Grucker, P. Jacquier, J. Low Temp. Phys. 179(5–6), 390 (2015). https://doi.org/10.1007/s10909-013-1037-9

    Article  ADS  Google Scholar 

  64. M. Boninsegni, N. Prokof’ev, B. Svistunov, Phys. Rev. Lett. 96, 070601 (2006). https://doi.org/10.1103/PhysRevLett.96.070601

    Article  ADS  Google Scholar 

  65. Z.G. Cheng, J. Beamish, Phys. Rev. Lett. 121, 055301 (2018). https://doi.org/10.1103/PhysRevLett.121.055301

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank the following persons for stimulating and enlightening discussions regarding this topic: J. Dupont-Roc, F. Souris, A. Qu, A. Trimèche, E. Rolley, P.E. Wolf, F. Caupin, S.Balibar, L. Skrbek and the following ones for the impulse and motivations they gave me for writing this review : P. Leiderer, L. Skrbek, L. Bromet, J. Catherine, A. Laliotis, J.M. Manceau and O. Morizot. I am much indebted to my colleague Prof. Ph. Jacquier, who sadly passed away recently (24/01/2019), for his great investment and his constant motivation in our common work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jules Grucker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grucker, J. Metastable Phases of Liquid and Solid \(^4\)He. J Low Temp Phys 197, 149–166 (2019). https://doi.org/10.1007/s10909-019-02212-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02212-8

Keywords

Navigation