Skip to main content
Log in

Study of Dissipative Losses in AC-Biased Mo/Au Bilayer Transition-Edge Sensors

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We are developing kilo-pixel arrays of transition-edge sensors (TESs) for the X-ray Integral Field Unit on ESA’s Athena observatory. Previous measurements of AC-biased Mo/Au TESs have highlighted a frequency-dependent loss mechanism that results in broader transitions and worse spectral performance compared to the same devices measured under DC bias. In order to better understand the nature of this loss, we are now studying TES pixels in different geometric configurations. We present measurements on devices of different sizes and with different metal features used for noise mitigation and X-ray absorption. Our results show how the loss mechanism is strongly dependent upon the amount of metal in close proximity to the sensor and can be attributed to induced eddy current coupling to these features. We present a finite element model that successfully reproduces the magnitude and geometry dependence of the losses. Using this model, we present mitigation strategies that should reduce the losses to an acceptable level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Barret et al., Proc. SPIE  9905, 99052F (2016). https://doi.org/10.1117/12.2232432

  2. S. J. Smith et al., Proc. SPIE  9905, 99052H (2016). https://doi.org/10.1117/12.2231749

  3. L. Gottardi et al., IEEE Trans. Appl. Supercond. 27, 4 (2017). https://doi.org/10.1109/TASC.2017.2655500

    Article  Google Scholar 

  4. J.N. Ullom et al., Appl. Phys. Lett. 84, 2 (2004). https://doi.org/10.1063/1.1753058

    Article  Google Scholar 

  5. M.A. Lindeman et al., Nucl. Instrum. Methods Phys. Res. 520, 1 (2004). https://doi.org/10.1016/j.nima.2003.11.264

    Article  Google Scholar 

  6. M.P. Bruijn et al., J. Low Temp. Phys. 167, 5 (2012). https://doi.org/10.1007/s10909-011-0422-5

    Article  Google Scholar 

  7. M. Kiviranta, L. Grönberg, N. Beev, J. van der Kuur, J. Phys. Conf. Ser. 507, 4 (2014). https://doi.org/10.1088/1742-6596/507/4/042017

    Article  Google Scholar 

  8. J.E. Sadleir et al., Phys. Rev. Lett. 104, 047003 (2010). https://doi.org/10.1103/PhysRevLett.104.047003

    Article  ADS  Google Scholar 

  9. S.J. Smith et al., J. Appl. Phys. 114, 7 (2013). https://doi.org/10.1063/1.4818917

    Article  Google Scholar 

  10. L. Gottardi et al., J. Low Temp. Phys. 176, 3 (2014). https://doi.org/10.1007/s10909-014-1093-9

    Article  Google Scholar 

  11. D.S. Swetz, D.A. Bennett, K.D. Irwin, D.R. Schmidt, J.N. Ullom, Appl. Phys. Lett. 101, 2 (2012). https://doi.org/10.1063/1.4771984

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sakai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakai, K., Adams, J.S., Bandler, S.R. et al. Study of Dissipative Losses in AC-Biased Mo/Au Bilayer Transition-Edge Sensors. J Low Temp Phys 193, 356–364 (2018). https://doi.org/10.1007/s10909-018-2002-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-2002-4

Keywords

Navigation