Skip to main content
Log in

Development of Pulse Tube Cryocoolers at SITP for Space Application

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Over the last 10 years, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, has developed very high-efficiency pulse tube cryocoolers (PTCs) for aerospace applications. These PTCs can provide cooling power from milliwatt scale to tens of watts over a range of temperatures from 30 to 170 K and can be used to cool a variety of detectors in space applications (such as quantum interference devices, radiometers and ocean color sensors) that must operate at a specific cryogenic temperature to increase the signal-to-noise ratio, sensitivity and optical resolution. This paper reviews the development of single-stage PTCs over a range of weights from 1.6 to 12 kg that offer cooling powers at the cold temperature range from 40 to 170 K. In addition, a two-stage 30 K-PTC is under development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. A. Rogalski, Recent progress in infrared detector technologies. Infrared Phys. Technol. 54, 136–154 (2011)

    Article  ADS  Google Scholar 

  2. N. Rando, D. Lumb, M. Bavdaz et al., Space science applications of cryogenic detectors. Nucl. Instrum. Methods Phys. Res. A 522, 62–68 (2004)

    Article  ADS  Google Scholar 

  3. Ray Radebaugh, Refrigerators for aircraft superconducting generators and motors. Adv. Cryog. Eng. 1434, 171–182 (2012)

    Google Scholar 

  4. R.G. Ross Jr., R.F. Boyle, An Overview of NASA Space Cryocooler Programs—2006. Cryocoolers 14 (ICC Press, Boulder, CO, 2007), pp. 1–10

    Google Scholar 

  5. T. Nguyen, G. Toma, J. Raab, HEC pulse tube cooler performance enhancement. Int. Refrig. Conf. 17, 79–83 (2012)

    Google Scholar 

  6. J. Raab, E. Tward, Northrop Grumman aerospace systems cryocooler overview. Cryogenics 50, 572–581 (2010)

    Article  ADS  Google Scholar 

  7. D. Durand, E. Tward, G. Toma et al., Efficient High Capacity Space Microcooler. Cryocoolers 18 (ICC Press, Boulder, CO, 2014), pp. 59–64

    Google Scholar 

  8. T. Nast, J. Olson, P. Champagne et al., Overview of Lockheed Martin cryocoolers. Cryogenics 46, 164–168 (2006)

    Article  ADS  Google Scholar 

  9. J.R. Olson, P. Champagne, E. Roth et al., Very hgih capacity aerospace cryocooler. Adv. Cryog. Eng. 1434, 161–167 (2012)

    Google Scholar 

  10. J.R. Olson, P. Champagne, E. Roth et al., Coaxial Pulse Tube Microcryocooler. Cryocoolers 18 (ICC Press, Boulder, CO, 2014), pp. 51–57

    Google Scholar 

  11. W.v.d. Groep, J.C. Mullie, D. Willems et al., Developments on a wide range of coaxial Pulse-Tube Refrigerators at THALES Cryogenics, in Proceedings of ICEC. (2008), pp. 123–128

  12. W.V.D. Groep, J.C. Mullie, D. Willems et al., Development of a 15W Coaxial Pulse Tube Cooler. Cryocoolers 15 (ICC Press, Boulder, CO, 2009), pp. 157–165

    Google Scholar 

  13. A.K. Zhang, X. Chen, Y.N. Wu et al., Study on a 10W/90 K in-line pulse tube refrigerator. Cryogenics 52, 800–804 (2012)

    Article  ADS  Google Scholar 

  14. A.K. Zhang, S.S. Liu, H.F. Zhu et al., Experimental study on an aerospace Stirling type pulse tube refrigerator with 3W@80K. Cryog. Chin. 5, 30–32 (2016)

    Google Scholar 

  15. Yu. Huiqin, Wu Yinong, Lei Ding et al., An efficient miniature 120 Hz pulse tube cryocooler using high porosity regenerator material. Cryogenics 88, 22–28 (2017)

    Article  ADS  Google Scholar 

  16. A.K. Zhang, Y.N. Wu, H.Q. Yu et al., Study on miniaturized pulse tube cryocoolers. in Proceedings of the China Engineering Thermal Physics Annual Conference. (Guangzhou, China, 2016)

  17. A.K. Zhang, Y.N. Wu, S.S. Liu et al., Effect of impedance on a compressor driving pulse tube refrigerator. Appl. Therm. Eng. 124, 688–694 (2017)

    Article  ADS  Google Scholar 

  18. A.K. Zhang, Y.N. Wu, S.S. Liu et al., Experiment Study of a Coaxial Pulse Tube Cryocooler. Cryocoolers 18 (ICC Press, Boulder, CO, 2014), pp. 151–154

    Google Scholar 

  19. A.K. Zhang, Y.N. Wu, S.S. Liu et al., Simulation and experimental study of a 6W@60K PTC. J. Eng. Thermaphys. 5, 945–948 (2015)

    Google Scholar 

  20. S.S. Liu, X. Chen, A.K. Zhang et al., Impact of coiled type inertance tube on performance of pulse tube refrigerator. Appl. Thermal Eng. 107, 63–69 (2016)

    Article  Google Scholar 

  21. S.S. Liu, X. Chen, A.K. Zhang et al., Investigation on phase shifter of a 10W/70K inertance. Int. J. Refrig. 74, 450–457 (2017)

    Article  Google Scholar 

  22. A.K. Zhang, Y.N. Wu, S.S. Liu et al., High-efficiency 3 W/40 K single-stage pulse tube cryocooler for space application. Cryogenics 90, 41–46 (2018)

    Article  ADS  Google Scholar 

  23. Y.Y. Jiang, Research on Key Technology of 20K Cryogenic Temperature Two-Stage Pulse Tube Cryocooler. (Doctoral Thesis, University of Chinese Academy of Sciences, 2017)

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (No. 51741610) and the Natural Science Foundation of Shanghai-China (No. 16ZR1441500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankuo Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, A., Wu, Y., Liu, S. et al. Development of Pulse Tube Cryocoolers at SITP for Space Application. J Low Temp Phys 191, 228–241 (2018). https://doi.org/10.1007/s10909-018-1871-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1871-x

Keywords

Navigation