Skip to main content
Log in

2D Dilute Bose Mixture at Low Temperatures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The thermodynamic and superfluid properties of the dilute two-dimensional binary Bose mixture at low temperatures are discussed. We also considered the problem of the emergence of the long-range order in these systems. All calculations are performed by means of the celebrated Popov path-integral approach to the Bose gas with a short-range interparticle potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. A. Posazhennikova, Phys. Rev. Mod. 78, 1111 (2006)

    Article  ADS  Google Scholar 

  2. Z. Hadzibabic, J. Dalibard, Riv. Nuovo Cim. 34, 389 (2011)

    Google Scholar 

  3. M. Schick, Phys. Rev. A 3, 1067 (1971)

    Article  ADS  Google Scholar 

  4. Y.U.E. Lozovik, V.I. Yudson, Phys. A 93, 493 (1978)

    Article  Google Scholar 

  5. A.A. Ovchinnikov, J. Phys. Condens. Matter 5, 8665 (1993)

    Article  ADS  Google Scholar 

  6. A.Y. Cherny, A.A. Shanenko, Phys. Rev. E 64, 027105 (2001)

    Article  ADS  Google Scholar 

  7. S. Pilati, J. Boronat, J. Casulleras, S. Giorgini, Phys. Rev. A 71, 023605 (2005)

    Article  ADS  Google Scholar 

  8. F. Mazzanti, A. Polls, A. Fabrocini, Phys. Rev. A 71, 033615 (2005)

    Article  ADS  Google Scholar 

  9. V.N. Popov, Theor. Math. Phys. 11, 565 (1972)

    Article  Google Scholar 

  10. C. Mora, Y. Castin, Phys. Rev. A 67, 053615 (2003)

    Article  ADS  Google Scholar 

  11. V.N. Popov, Functional Integrals and Collective Excitations (Cambridge University Press, Cambridge, 1987)

    MATH  Google Scholar 

  12. D.S. Fisher, P.C. Hohenberg, Phys. Rev. B 37, 4936 (1988)

    Article  ADS  Google Scholar 

  13. E.B. Kolomeisky, J.P. Straley, Phys. Rev. B 46, 11749 (1992)

    Article  ADS  Google Scholar 

  14. N. Dupuis, Phys. Rev. Lett. 102, 190401 (2009)

    Article  ADS  Google Scholar 

  15. N. Dupuis, Phys. Rev. A 80, 043627 (2009)

    Article  ADS  Google Scholar 

  16. A. Rancon, N. Dupuis, Phys. Rev. A 85, 063607 (2012)

    Article  ADS  Google Scholar 

  17. J. Krieg, D. Strassel, S. Streib, S. Eggert, P. Kopietz, Phys. Rev. B 95, 024414 (2017)

    Article  ADS  Google Scholar 

  18. J.O. Andersen, Eur. Phys. J. B 28, 389 (2002)

    Article  ADS  Google Scholar 

  19. C.C. Chien, J.H. She, F. Cooper, Ann. Phys. 347, 192 (2014)

    Article  ADS  Google Scholar 

  20. V.N. Popov, A.V. Seredniakov, Sov. Phys. JETP 50, 193 (1979)

    ADS  Google Scholar 

  21. J.O. Andersen, U.Al Khawaja, H.T.C. Stoof, Phys. Rev. Lett. 88, 070407 (2002)

    Article  ADS  Google Scholar 

  22. U. Al Khawaja, J.O. Andersen, N.P. Proukakis, H.T.C. Stoof, Phys. Rev. A 66, 013615 (2002)

    Article  ADS  Google Scholar 

  23. S.P. Cockburn, N.P. Proukakis, Phys. Rev. A 86, 033610 (2012)

    Article  ADS  Google Scholar 

  24. M.Y. Kagan, D.V. Efremov, Phys. Rev. B 65, 195103 (2002)

    Article  ADS  Google Scholar 

  25. E. Altman, W. Hofstetter, E. Demler, M.D. Lukin, New J. Phys. 5, 113 (2003)

    Article  ADS  Google Scholar 

  26. A. Kuklov, N. Prokofev, B. Svistunov, Phys. Rev. Lett. 92, 050402 (2004)

    Article  ADS  Google Scholar 

  27. A. Kuklov, N. Prokofev, B. Svistunov, Phys. Rev. Lett. 92, 030403 (2004)

    Article  ADS  Google Scholar 

  28. K.P. Schmidt, J. Dorier, A. Lauchli, F. Mila, Phys. Rev. B 74, 174508 (2006)

    Article  ADS  Google Scholar 

  29. M. Guglielmino, V. Penna, B. Capogrosso-Sansone, Phys. Rev. A 82, 021601(R) (2010)

    Article  ADS  Google Scholar 

  30. L. de Forges de Parny, V.G. Rousseau, Phys. Rev. A 95, 013606 (2017)

    Article  ADS  Google Scholar 

  31. A.K. Kolezhuk, Phys. Rev. A 81, 013601 (2010)

    Article  ADS  Google Scholar 

  32. Y.-L. Lee, Y.-W. Lee, J. Phys. Soc. Jpn. 80, 044003 (2011)

    Article  ADS  Google Scholar 

  33. D.S. Petrov, G.E. Astrakharchik, Phys. Rev. Lett. 117, 100401 (2016)

    Article  ADS  Google Scholar 

  34. V. Pastukhov, Ann. Phys. 372, 149 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  35. I.O. Vakarchuk, V.S. Pastukhov, J. Phys. Stud. 12, 1001 (2008)

    Google Scholar 

  36. I.O. Vakarchuk, V.S. Pastukhov, J. Phys. Stud. 12, 3002 (2008)

    Google Scholar 

  37. A. Rovenchak, Low Temp. Phys. 42, 36 (2016)

    Article  ADS  Google Scholar 

  38. C.-C. Chang, R. Friedberg, Phys. Rev. B 51, 1117 (1995)

    Article  ADS  Google Scholar 

  39. V. Pastukhov, J. Low Temp. Phys. 186, 148 (2017)

    Article  ADS  Google Scholar 

  40. L. Salasnich, F. Toigo, Phys. Rep. 640, 1 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  41. V. Pastukhov, Phys. Rev. A 95, 023614 (2017)

    Article  ADS  Google Scholar 

  42. A.F. Andreev, E.P. Bashkin, Zh Eksp, Teor. Fiz. 69, 319 (1975)

    Google Scholar 

  43. A.F. Andreev, E.P. Bashkin, Zh Eksp, Sov. Phys. JETP 42, 164 (1975)

    ADS  Google Scholar 

  44. A.G. Volosniev, H.-W. Hammer, N.T. Zinner, Phys. Rev. A 92, 023623 (2015)

    Article  ADS  Google Scholar 

  45. F. Werner, Y. Castin, Phys. Rev. A 86, 053633 (2012)

    Article  ADS  Google Scholar 

  46. P. Kroiss, M. Boninsegni, L. Pollet, Phys. Rev. B 93, 174520 (2016)

    Article  ADS  Google Scholar 

  47. C. Mora, Y. Castin, Phys. Rev. Lett. 102, 180404 (2009)

    Article  ADS  Google Scholar 

  48. G.E. Astrakharchik, J. Boronat, I.L. Kurbakov, Y.U.E. Lozovik, F. Mazzanti, Phys. Rev. A 81, 013612 (2010)

    Article  ADS  Google Scholar 

  49. L. Salasnich, Phys. Rev. Lett. 118, 130402 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Dr. A. Rovenchak for invaluable suggestions. This work was partly supported by Project FF-30F (No. 0116U001539) from the Ministry of Education and Science of Ukraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Pastukhov.

Appendix

Appendix

After transformation (4) the action of the two-component Bose mixture is

$$\begin{aligned}&S\rightarrow \int \mathrm{d}x \,\psi ^*_a(x)\left\{ \partial _{\tau }+\frac{\hbar ^2 }{2m_a}\Delta +\mu _a\right\} \psi _a(x)\nonumber \\&\quad +\int \mathrm{d}x \,\tilde{\psi }^*_a(x)\left\{ \partial _{\tau }+\frac{\hbar ^2 }{2m_a}\Delta +\mu _a\right\} \tilde{\psi }_a(x)\nonumber \\&\quad -\frac{1}{2}\int \mathrm{d}x\int \mathrm{d}x'\varPhi _{ab}(x-x')|\psi _a(x)|^2|\psi _b(x')|^2\nonumber \\&\quad -\int \mathrm{d}x\int \mathrm{d}x'\varPhi _{ab}(x-x')\left\{ \psi ^*_a(x) \psi ^*_b(x')\psi _b(x')\tilde{\psi }_a(x)+\mathrm{c.c}\right\} \nonumber \\&\quad -\int \mathrm{d}x\int \mathrm{d}x'\varPhi _{ab}(x-x')\left\{ |\psi _a(x)|^2|\tilde{\psi }_b(x')|^2+\psi ^*_a(x) \tilde{\psi }^*_b(x')\psi _b(x')\tilde{\psi }_a(x)\right\} \nonumber \\&\quad -\frac{1}{2}\int \mathrm{d}x\int \mathrm{d}x'\varPhi _{ab}(x-x')\left\{ \psi ^*_a(x)\psi ^*_b(x')\tilde{\psi }_b(x')\tilde{\psi }_a(x)+\mathrm{c.c}\right\} \nonumber \\&\quad -\int \mathrm{d}x\int \mathrm{d}x'\varPhi _{ab}(x-x')\left\{ \tilde{\psi }^*_a(x) \tilde{\psi }^*_b(x')\tilde{\psi }_b(x')\psi _a(x)+\mathrm{c.c}\right\} \nonumber \\&\quad -\frac{1}{2}\int \mathrm{d}x\int \mathrm{d}x'\varPhi _{ab}(x-x')|\tilde{\psi }_a(x)|^2|\tilde{\psi }_b(x')|^2, \end{aligned}$$
(32)

where nine interaction vertices are presented diagrammatically in Fig. 1. For a very dilute system while integrating out \(\tilde{\psi }\)-fields one can use simple perturbation theory considering the ideal gas action (the second term in Eq. (32)) as a zero-order approximation. Furthermore, in the low-temperature limit the only nonzero contribution to the effective action governing “slowly” varying fields is given by the graphs depicted in Fig. 2. This infinite series of diagrams is summed up to give the linear integral equation for the renormalized symmetric vertices

$$\begin{aligned} t_{ab}(P,Q|Q+K,P-K)= & {} [g_{ab}(k)+\delta _{ab}g_{aa}(p-k-q)]/2^{\delta _{ab}}\nonumber \\&-\frac{1}{2^{\delta _{ab}}\mathcal {A}\beta }\sum _{S}[g_{ab}(s)+\delta _{ab}g_{aa}(p-s-q)]\nonumber \\&\times \,G_a(P-S)G_b(Q+S)t_{ab}\nonumber \\&\quad (P-S,Q+S|Q+K,P-K), \end{aligned}$$
(33)

where \(g_{ab}(k)\) is the Fourier transform of \(\varPhi _{ab}(\mathbf{r})\), and we used notation for Green’s functions of the ideal gases \(G_a(P)=1/[i\omega _p-\varepsilon _a(p)+\mu _a]\). In the dilute limit, where \(\mu _{a}\ll \hbar ^2\varLambda ^2/m_a\) (the most natural choice in the two-component case is \(\varLambda ^2\sim n_A+n_B\)) and the physically relevant region of the wave-vectors integration \(p,q,k\sim \sqrt{m\mu _{a}}/\hbar \ll \varLambda \), we can neglect the dependence on P and Q under the integral in Eq. (33). If it is also assumed that the interaction potentials are short-ranged, i.e., \(g_{ab}(s)\) weakly depends on s, then the \(t_{ab}(-S,S|0,0)\) is also independent on the transferred momentum. The latter observation allows to find the asymptotic solution of (33) (denoting \(t_{ab}(0,0|0,0)\equiv t_{ab}\))

$$\begin{aligned} \frac{1}{t_{ab}}=\frac{1}{g_{ab}(0)} +\int ^{\infty }_{\varLambda }\frac{\mathrm{d}s\,s}{2\pi }\frac{g_{ab}(s)}{g_{ab}(0)} \frac{1}{\varepsilon _{a}(s)+\varepsilon _{b}(s)}. \end{aligned}$$
(34)

Actually, \(t_{ab}\) enters the hydrodynamic action as a matrix of the effective coupling constants.

Fig. 1
figure 1

Diagrammatic representation of the vertices appearing in Eq. (32). The solid and dashed lines stand for the \(\psi _a(x)\) and \(\tilde{\psi }_a(x)\), respectively

Fig. 2
figure 2

Renormalization of the interaction potential in the hydrodynamic action

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konietin, P., Pastukhov, V. 2D Dilute Bose Mixture at Low Temperatures. J Low Temp Phys 190, 256–266 (2018). https://doi.org/10.1007/s10909-017-1836-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-017-1836-5

Keywords

Navigation