Skip to main content
Log in

From Liquid Helium to Granular Materials

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

This article provides a brief history of work that I have either carried out with Horst Meyer, or that was connected in some way with experiences reaching back to the laboratory known as LTM for low temperature [physics] Meyer, at Duke University. It is not intended as a complete review of all relevant work, but rather to hit highlights. My work with Horst started with studies of critical phenomena in liquid helium. This system provided an extremely rich and diverse testing ground for then newly emerging theories of static and dynamic critical phenomena. A key aspect of the experimental work with Horst was high-precision measurements of temperature and pressure. The ability to measure thermal properties with exceptional precision was at the core of this work. It also provided a natural springboard for entirely different investigations of Rayleigh–Bénard convection, which had just been initiated by Guenter Ahlers. My postdoc with Guenter provided a whole new set of experiences involving convection, dynamical instabilities, and chaos, where again the special properties, measurement techniques, and creative approaches to research associated with liquid helium were critical. In fact, later, knowledge of these techniques allowed me to start a whole new research direction in granular materials, which is a primary focus of my current research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, Oxford, New York, 1971)

    Google Scholar 

  2. B. Widom, J. Chem. Phys. 43, 3898 (1965)

    Article  ADS  Google Scholar 

  3. L. Kadanoff et al., Rev. Mod. Phys. 39, 395 (1967)

    Article  ADS  Google Scholar 

  4. M. Fisher, Rep. Prog. Phys. 30, 615 (1967)

    Article  ADS  Google Scholar 

  5. K.G. Wilson, Phys. Rev. B4, 3174–3184 (1971)

    Article  ADS  Google Scholar 

  6. E.K. Riedel, Phys. Rev. Lett. 28, 675 (1972)

    Article  ADS  Google Scholar 

  7. G. Goellner, R. Behringer, H. Meyer, J. Low Temp. Phys. 13, 113 (1973)

    Article  ADS  Google Scholar 

  8. E.K. Riedel, H. Meyer, R.P. Behringer, J. Low Temp. Phys. 22, 369 (1976)

    Article  ADS  Google Scholar 

  9. R.B. Griffiths, Phys. Rev. Lett. 24, 715 (1970)

    Article  ADS  Google Scholar 

  10. G. Ahlers, Experiments near the superfluid transition in \(^4\)He and \(^3\)He–\(^4\)He mixtures, in The Physics of Liquid and Solid Helium, Part I, ed. by K.H. Bennemann, J.B. Ketterson (Wiley, New York, 1976)

    Google Scholar 

  11. H.B. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, 1985)

    MATH  Google Scholar 

  12. Robert P. Behringer, Ted Doiron, Horst Meyer, Equation of state of \(^3He\) near its liquid–vapor critical point. J. Low Temp. Phys. 24, 315 (1976)

    Article  ADS  Google Scholar 

  13. H.A. Kierstead, Phys. Rev. A 7, 242 (1973)

    Article  ADS  Google Scholar 

  14. T. Doiron, R.P. Behringer, H. Meyer, J. Low Temp. Phys. 24, 345 (1976)

    Article  ADS  Google Scholar 

  15. G. Ahlers, Phys. Rev. Lett. 33, 1185 (1974)

    Article  ADS  Google Scholar 

  16. M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993)

    Article  ADS  Google Scholar 

  17. R.P. Behringer, Rev. Mod. Phys. 57, 657–687 (1985)

    Article  ADS  Google Scholar 

  18. J.P. Gollub, H.L. Swinney, Phys. Rev. Lett. 35, 927 (1975)

    Article  ADS  Google Scholar 

  19. C.D. Anderek, S.S. Liu, H.L. Swinney, J. Fluid Mech. 164, 155 (1986)

    Article  ADS  Google Scholar 

  20. R.J. Donnelly, Phys. Today 44, 32–39 (1991)

    Article  Google Scholar 

  21. Guenter Ahlers, R.P. Behringer, Phys. Rev. Lett. 40, 712 (1978)

    Article  ADS  Google Scholar 

  22. A. Libchabe, J. Maurer, J. Phys. Colloq. 41–C3, 51 (1980)

    Google Scholar 

  23. J.P. Gollub, J.F. Steinman, Phys. Rev. Lett. 47, 505 (1981)

    Article  ADS  Google Scholar 

  24. R.P. Behringer, G. Ahlers, J. Fluid Mech. 125, 219 (1982)

    Article  ADS  Google Scholar 

  25. R.P. Behringer, G. Ahlers, Phys. Lett. 62A, 329 (1977)

    Article  ADS  Google Scholar 

  26. H. Steven, Strogatz, Nonlinear Dynamics and Chaos, 2nd edn. (Westview Press, Boulder, 2015)

    Google Scholar 

  27. R.P. Behringer, H. Gao, J.N. Shaumeyer, Phys. Rev. Lett. 50, 1199 (1983)

    Article  ADS  Google Scholar 

  28. V. Croquette, M. Mory, F. Scholssler, J. Phys. 44, 293 (1983)

    Article  Google Scholar 

  29. R.W. Walden, G. Ahlers, Phys. Rev. A 27, 1255 (1983)

    Article  ADS  Google Scholar 

  30. C.W. Meyer, D.S. Cannell, G. Ahlers, J.B. Swift, P.C. Hohenberg, Phys. Rev. Lett. 61, 947 (1988)

    Article  ADS  Google Scholar 

  31. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1959)

    MATH  Google Scholar 

  32. G. Ruppeiner, H. Meyer, Phys. Lett. 70A, 433 (1979)

    Article  ADS  Google Scholar 

  33. R.P. Behringer, H. Meyer, J. Low Temp. Phys. 46, 407 (1982)

    Article  ADS  Google Scholar 

  34. R.P. Behringer, J. Low Temp. Phys. 62, 15 (1986)

    Article  ADS  Google Scholar 

  35. R.P. Behringer, J. Low Temp. Phys. 81, 1 (1990)

    Article  ADS  Google Scholar 

  36. M. Tanaka, A. Ikushima, K. Kaswasaki, Phys. Lett. 61A, 119 (1977)

    Article  ADS  Google Scholar 

  37. D. Gestrich, M. Dingus, H. Meyer, Phys. Lett. 99A, 331 (1983)

    Article  ADS  Google Scholar 

  38. M. Dingus, F. Zhong, H. Meyer, Phys. Rev. Lett. 54, 2347 (1985)

    Article  ADS  Google Scholar 

  39. R.P. Behringer, A. Onuki, H. Meyer, J. Low Temp. Phys. 81, 71 (1990)

    Article  ADS  Google Scholar 

  40. A. Onuki, H. Hao, R.A. Ferrell, Phys. Rev. A 41, 2256 (1990)

    Article  ADS  Google Scholar 

  41. A. Onuki, R.A. Ferrell, Phys. A 164, 245 (1990)

    Article  Google Scholar 

  42. B. Zapploi, D. Baily, Y. Garrabos, B. Le Neindre, P. Guenon, D. Beysens, Phys. Rev. A 41, 2264 (1990)

    Article  ADS  Google Scholar 

  43. H. Boukari, J.N. Shaumeyer, N.E. Briggs, R.W. Gammon, Phys. Rev. A 41, 2260 (1990)

    Article  ADS  Google Scholar 

  44. J.S. Olafsen, R.P. Behringer, J. Low Temp. Phys. 106, 673 (1997)

    Article  ADS  Google Scholar 

  45. J.S. Olafsen, R.P. Behringer, J. Low Temp. Phys. 111, 863 (1998)

    Article  ADS  Google Scholar 

  46. D.G. Schaeffer, J. Differ. Equ. 66, 19 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  47. E.B. Pitman, D.G. Schaeffer, Commun. Pure Appl. Math. 40, 421 (1987)

    Article  MathSciNet  Google Scholar 

  48. R.M. Nedderman, Statics and Kinematics of Granular Materials (Cambridge University Press, Cambridge, 1992)

    Book  Google Scholar 

  49. G.W. Baxter, R.P. Behringer, T. Fagert, G.A. Johnson, Pattern formation and time-dependence in granular flows, in Two Phase Flows and Waves, ed. by D.D. Joseph, D.G. Schaeffer (Springer, New York, 1990)

    Google Scholar 

  50. G.W. Baxter, R. Leone, R.P. Behringer, Europhys. Lett. 21, 569 (1993)

    Article  ADS  Google Scholar 

  51. H.M. Jaeger, S.R. Nagel, R.P. Behringer, Rev. Mod. Phys. 68, 1259 (1996)

    Article  ADS  Google Scholar 

  52. T.S. Majmudar, R.P. Behringer, Nature 435, 1079–1082 (2005)

    Article  ADS  Google Scholar 

  53. T.S. Majmudar, M. Sperl, S. Luding, R.P. Behringer, Phys. Rev. Lett. 98, 058001 (2007)

    Article  ADS  Google Scholar 

  54. Dapeng Bi, Jie Zhang, Bulbul Chakraborty, R.P. Behringer, Nature 480, 355–358 (2011)

    Article  ADS  Google Scholar 

  55. J. Ren, J.A. Dijksman, R.P. Behringer, Phys. Rev. Lett. 110, 018302 (2013)

    Article  ADS  Google Scholar 

  56. C.S. O’Hern, Computational methods, in Handbook of Granular Materials, ed. by S.V. Franklin, M.D. Shattuck (CRC Press, Boca Raton, 2016)

    Google Scholar 

  57. F. Radjai, M. Jean, J.-J. Moreau, S. Roux, Phys. Rev. Lett. 96, 274 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work described here has been supported by numerous grants and organizations, including currently NSF-DMR1206351, NASA NNX15AD38G, W.M. Keck Foundation, the Triangle MRSEC, NSF-DMS1248071, and recently by DTRA, IFPRI, and ARO. I particularly appreciate helpful comments by a reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert P. Behringer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behringer, R.P. From Liquid Helium to Granular Materials. J Low Temp Phys 185, 230–245 (2016). https://doi.org/10.1007/s10909-016-1660-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1660-3

Keywords

Navigation