Skip to main content
Log in

Low thermal conductivity and high thermoelectric performance in Cu2Se/CuAgSe composite materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

As a typical superionic conductor, Cu2Se has attracted much attention in recent years due to its good thermoelectric performance, low toxicity, and high elemental abundance. However, its relatively high thermal conductivity still restricts the further improvement in figure of merit (ZT). Here, we report a facile synthesis of CuAgSe/Cu2Se composite ceramics to optimize the thermoelectric properties. Consequently, the thermal conductivity of the composite ceramics is greatly reduced due to the intrinsic low thermal conductivity of CuAgSe and the porous structures of the composites. Introducing a moderate amount CuAgSe can reduce the thermal conductivity to one-third of the value of pure Cu2Se, while the corresponding power factor (PF) remains unchanged. Ultimately, the CuAgSe/Cu2Se composite ceramics presented a good thermoelectric properties with a ZT value of 1.43 at 900 K. This work provides a simple and effective strategy to optimize Cu2Se-based materials thermoelectric performance, which also are helpful to the optimization design of other thermoelectric systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

Code availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Z.G. Chen, G. Han, L. Yang, L. Cheng, J. Zou, Nanostructured thermoelectric materials: current research and future challenge. Prog Na t Sci-Mater. 22, 535–549 (2012)

    Google Scholar 

  2. X. Shi, L. Chen, C. Uher, Recent advances in high-performance bulk thermoelectric materials. Int. Mater. Rev. 61, 379–415 (2016)

    CAS  Google Scholar 

  3. S. Tippireddy, P.K. D S, S. Das, R.C. Mallik, Oxychalcogenides as thermoelectric materials: an overview. ACS Appl. Energy Mater. 4, 2022–2040 (2021)

    CAS  Google Scholar 

  4. D. Shi, Z. Geng, K. Lam, Study of Conventional Sintered Cu2Se Thermoelectric Material. Energies. 12, 401–410 (2019)

    CAS  Google Scholar 

  5. L. Huang, Y. Zheng, L. Xing, B. Hou, Recent progress of thermoelectric applications for cooling/heating, power generation, heat flux sensor and potential prospect of their integrated applications. Therm. Sci. Eng. Prog. 45, 102064 (2023)

    Google Scholar 

  6. C. Gayner, K.K. Kar, Recent advances in thermoelectric materials. Prog Mater. Sci. 83, 330–382 (2016)

    CAS  Google Scholar 

  7. J. He, T.M. Tritt, Advances in thermoelectric materials research: looking back and moving forward. Science. 357, eaak9997 (2017)

    PubMed  Google Scholar 

  8. R. Pandey, P. Thapa, V. Kumar, Y. Zhu, N. Wang, M. Bystrzejewski, S.K. Tiwari, Updates in phase change materials for thermoelectric devices: Status and challenges. Materialia. 21, 101357–101389 (2022)

    CAS  Google Scholar 

  9. S.M. Pourkiaei, M.H. Ahmadi, M. Sadeghzadeh, S. Moosavi, F. Pourfayaz, L. Chen, M.A. Pour Yazdi, R. Kumar, Thermoelectric cooler and thermoelectric generator devices: a review of present and potential applications, modeling and materials. Energy. 186, 115849 (2019)

    Google Scholar 

  10. Z. Fan, Y. Zhang, L. Pan, J. Ouyang, Q. Zhang, Recent developments in flexible thermoelectrics: from materials to devices. Renew. Sust Energ. Rev. 137, 110448 (2021)

    Google Scholar 

  11. Z. Soleimani, S. Zoras, B. Ceranic, S. Shahzad, Y. Cui, A review on recent developments of thermoelectric materials for room-temperature applications. Sustain. Energy Techn. 37, 100604 (2020)

    Google Scholar 

  12. X.L. Shi, X. Tao, J. Zou, Z.G. Chen, High-performance thermoelectric SnSe: aqueous synthesis, innovations, and challenges. Adv. Sci. 7, 1902923 (2020)

    CAS  Google Scholar 

  13. J. Chen, Q. Sun, D. Bao, B.Z. Tian, Z. Wang, J. Tang, D. Zhou, L. Yang, Z.G. Chen, Simultaneously enhanced strength and plasticity of Ag2Se-based thermoelectric materials endowed by nano-twinned CuAgSe secondary phase. Acta Mater. 220, 117335 (2021)

    CAS  Google Scholar 

  14. M. Noroozi, G. Jayakumar, K. Zahmatkesh, J. Lu, L. Hultman, M. Mensi, S. Marcinkevicius, B. Hamawandi, M.Y. Tafti, A.B. Ergül, Z. Ikonic, M.S. Toprak, H.H. Radamson, Unprecedented thermoelectric power factor in SiGe Nanowires Field-Effect transistors. ECS J. Solid State SC 6, Q114–Q119 (2017)

    CAS  Google Scholar 

  15. J. Liu, M. Li, S. Yang, S. Zhang, J. Feng, C. Li, P. Zhang, L. Zhou, Enhanced thermoelectric and mechanical properties in hierarchical tubular porous cuprous selenide. Scripta Mater. 176, 104–107 (2020)

    CAS  Google Scholar 

  16. Q. Hu, Y. Zhang, Y. Zhang, X.J. Li, H. Song, High thermoelectric performance in Cu2Se/CDs hybrid materials. J. Alloy Compd. 813, 152204 (2020)

    CAS  Google Scholar 

  17. Z. Jin, Q. Su, H.Q. Liu, Y.F. Wang, Enhanced thermoelectric properties of Cu-Se system via bond-structure adjustment by Ag-doping. J. Alloy Compd. 927, 166872 (2022)

    CAS  Google Scholar 

  18. L. Ruan, H. Zhao, D. Li, S. Jin, S. Li, L. Gu, J. Liang, Enhancement of Thermoelectric properties of Molybdenum Diselenide through combined mg intercalation and nb doping. J. Electron. Mater. 45, 2926–2934 (2016)

    CAS  ADS  Google Scholar 

  19. W. Xie, F. Liu, Y. Zheng, N. Ge, B. Dai, X. Zhang, Thermoelectric performance enhancement of eco-friendly Cu2Se through incorporating CB4. Rsc Adv. 12, 14112–14118 (2022)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. P. Qiu, X. Shi, L. Chen, Cu-based thermoelectric materials. Energy Storage Mater. 3, 85–97 (2016)

    Google Scholar 

  21. R. Mulla, M.H.K. Rabinal, Copper sulfides: Earth-Abundant and low‐cost thermoelectric materials. Energy Technol-Ger. 7, 1800850 (2019)

    Google Scholar 

  22. W.D. Liu, L. Yang, Z.G. Chen, Cu2Se thermoelectrics: property, methodology, and device. Nano Today. 35, 100938 (2020)

    CAS  Google Scholar 

  23. Z. Zhang, K. Zhao, T.R. Wei, P. Qiu, L. Chen, X. Shi, Cu2Se-Based liquid-like thermoelectric materials: looking back and stepping forward. Energ. Environ. Sci. 13, 3307–3329 (2020)

    CAS  Google Scholar 

  24. K. Chen, B. Du, N. Bonini, C. Weber, H. Yan, M.J. Reece, Theory-guided synthesis of an eco-friendly and low-cost copper based Sulfide Thermoelectric Material. J. Phys. Chem. C 120, 27135–27140 (2016)

    CAS  Google Scholar 

  25. Y.X. Zhang, Q. Lou, Z.H. Ge, S.-W. Gu, J.X. Yang, J. Guo, Y.K. Zhu, Y. Zhou, X.H. Yu, J. Feng, J. He, Excellent thermoelectric properties and stability realized in copper sulfides based composites via complex nanostructuring. Acta Mater. 233, 117972 (2022)

    CAS  Google Scholar 

  26. J. Chen, T. Liu, D. Bao, B. Zhang, G. Han, C. Liu, J. Tang, D. Zhou, L. Yang, Z.G. Chen, Nanostructured monoclinic Cu2Se as a near-room-temperature thermoelectric material. Nanoscale. 12, 20536–20542 (2020)

    CAS  PubMed  Google Scholar 

  27. K.S. Weldert, W.G. Zeier, T.W. Day, M. Panthöfer, G.J. Snyder, W. Tremel, Thermoelectric Transport in Cu7PSe6 with high copper ionic mobility. J. Am. Chem. Soc. 136, 12035–12040 (2014)

    CAS  PubMed  Google Scholar 

  28. T.W. Day, W.G. Zeier, D.R. Brown, B.C. Melot, G.J. Snyder, Determining conductivity and mobility values of individual components in multiphase composite Cu1.97Ag0.03Se. Appl. Phys. Lett. 105, 172103 (2014)

    ADS  Google Scholar 

  29. C. Shi, X. Xi, E. Liu, G. Wu, W. Wang, Vacancy mediated ionic mobility in a phonon glass material CuAgSe. Solid State Ionics. 326, 183–187 (2018)

    CAS  Google Scholar 

  30. T.H. Nguyen, V.Q. Nguyen, A.T. Pham, J.H. Park, J.E. Lee, J.K. Lee, S. Park, S. Cho, Carrier control in CuAgSe by growth process or doping. J. Alloy Compd. 852, 157094 (2021)

    CAS  Google Scholar 

  31. L. Bo, Y. Wang, W. Wang, L. Wang, F. Li, M. Zuo, Y. Ma, D. Zhao, Grain size and compositional gradient dependence of thermoelectric performance for Cu3 – xNixSbSe4 materials. Results Phys. 26, 104337 (2021)

    Google Scholar 

  32. R. Bhardwaj, A. Bhattacharya, K. Tyagi, B. Gahtori, N.S. Chauhan, S. Bathula, S. Auluck, A. Dhar, Tin doped Cu3SbSe4: a stable thermoelectric analogue for the mid-temperature applications. Mater. Res. Bull. 113, 38–44 (2019)

    CAS  Google Scholar 

  33. K. Zhao, P. Qiu, X. Shi, L. Chen, Recent advances in Liquid-Like Thermoelectric materials. Adv. Funct. Mater. 30, 1903867 (2019)

    Google Scholar 

  34. L. Li, Y. Zhao, C. Shi, W. Zeng, B. Liao, M. Zhang, X. Tao, Facile synthesis of copper selenides with different stoichiometric compositions and their thermoelectric performance at a low temperature range. Rsc Adv. 11, 25955–25960 (2021)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. P. Nieroda, A. Kusior, J. Leszczyński, P. Rutkowski, A. Koleżyński, Thermoelectric properties of Cu2Se synthesized by Hydrothermal Method and densified by SPS technique. Materials. 14, 3650 (2021)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. W. Liu, X. Shi, R. Moshwan, M. Hong, L. Yang, Z.G. Chen, J. Zou, Enhancing thermoelectric performance of (Cu1-xAgx)2Se via CuAgSe secondary phase and porous design. Sustain. Mater. Techno 17, e00076 (2018)

    CAS  Google Scholar 

  37. C.Y. Oztan, B. Hamawandi, Y. Zhou, S. Ballikaya, M.S. Toprak, R.M. Leblanc, V. Coverstone, E. Celik, Thermoelectric performance of Cu2Se doped with rapidly synthesized gel-like carbon dots. J. Alloy Compd. 864, 157916 (2021)

    CAS  Google Scholar 

  38. G. Gariano, V. Lesnyak, R. Brescia, G. Bertoni, Z. Dang, R. Gaspari, L. De Trizio, L. Manna, Role of the Crystal structure in Cation Exchange reactions involving Colloidal Cu2Se nanocrystals. J. Am. Chem. Soc. 139, 9583–9590 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. X. Wang, P. Qiu, T. Zhang, D. Ren, L. Wu, X. Shi, J. Yang, L. Chen, Compound defects and thermoelectric properties in ternary CuAgSe-based materials. J. Mater. Chem. A 3, 13662–13670 (2015)

    CAS  Google Scholar 

  40. A.J. Hong, L. Li, H.X. Zhu, X.H. Zhou, Q.Y. He, W.S. Liu, Z.B. Yan, J.M. Liu, Z.F. Ren, Anomalous transport and thermoelectric performances of CuAgSe compounds. Solid State Ionics. 261, 21–25 (2014)

    CAS  Google Scholar 

  41. Y. Zuo, Y. Liu, Q.P. He, J.M. Song, H.L. Niu, C.J. Mao, CuAgSe nanocrystals: colloidal synthesis, characterization and their thermoelectric performance. J. Mater. Sci. 53, 14998–15008 (2018)

    CAS  ADS  Google Scholar 

  42. Z. Jin, T. Mao, P. Qiu, Z. Yue, L. Wang, K. Zhao, D. Ren, X. Shi, L. Chen, Thermoelectric properties and service stability of Ag-containing Cu2Se. Mater. Today Phys. 21, 100550 (2021)

    CAS  Google Scholar 

  43. K. Zhao, K. Liu, Z. Yue, Y. Wang, Q. Song, J. Li, M. Guan, Q. Xu, P. Qiu, H. Zhu, L. Chen, X. Shi, Are Cu2Te-Based compounds excellent thermoelectric materials? Adv. Mater. 31, 1903480 (2019)

    CAS  Google Scholar 

  44. Z. Zhou, Y. Huang, B. Wei, Y. Yang, D. Yu, Y. Zheng, D. He, W. Zhang, M. Zou, J.L. Lan, J. He, C.W. Nan, Y.H. Lin, Compositing effects for high thermoelectric performance of Cu2Se-based materials. Nat. Commun. 14, 2410 (2023)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  45. Z. Long, Y. Wang, X. Sun, Y. Li, Z. Zeng, L. Zhang, H. Chen, Band Engineering of the second phase to Reach High Thermoelectric performance in Cu2Se-Based Composite Material. Adv. Mater. 35, 2210345 (2023)

    CAS  Google Scholar 

  46. Z. Geng, D. Shi, L. Shi, Y. Li, G.J. Snyder, Lam, Conventional sintered Cu2-xSe thermoelectric material. J. Materiomics. 5, 626–633 (2019)

    Google Scholar 

  47. H. Liang, Z.Y. Liang, Z. Li, B.H. Ge, J.M. Song, Enhanced thermoelectric properties of Cu2-xSe by coordinating carrier concentration to reduce thermal conductivity. Ceram. Int. 48, 248–255 (2022)

    CAS  Google Scholar 

Download references

Funding

This work is supported the Projection of State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology (No. 20FKSY23).

Author information

Authors and Affiliations

Authors

Contributions

Xiaowei Zhang contributed to the conception of the study and contributed significantly to analysis and revised the manuscript. He Yu performed the experiments and the data analyses and wrote the manuscript. Jian Fu and Yi Wu helped perform the analysis with constructive discussions.

Corresponding author

Correspondence to Xiaowei Zhang.

Ethics declarations

Conflict of interest

The authors have no conflicts to declare.

Ethical approval

Not Applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Fu, J., Wu, Y. et al. Low thermal conductivity and high thermoelectric performance in Cu2Se/CuAgSe composite materials. J Mater Sci: Mater Electron 35, 399 (2024). https://doi.org/10.1007/s10854-024-12113-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12113-6

Navigation