Skip to main content
Log in

In Silico Investigation of Al, Si and Ge Dopants Effect on Structural and Electrical Properties of Pristine B12N12 Nanocage Toward Acrolein Adsorption

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Interaction between acrolein molecule and pristine, (Al/Si/Ge)-doped B11N12 nanocage has been performed by density functional theory at PBEPBE/6–311 + G (d, p) level of theory in gas environment. Total and partial density of states, HOMO–LUMO distributions, adsorption and gap energies, and thermodynamic properties were computed for studied structures. Based on the present theoretical results, this adsorption process can effectively modify the electrical conductivity (ΔEg = 75.95%) of the nanocage with − 18.65 kcal.mol−1 calculated for adsorption energy relevant to the most stable configuration C3H4O/B12N12 (S1) which suggests potential application of this nanocluster as a great sensor in detection of acrolein molecule avoiding the necessity of doping or functionalizing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Q. Sun, P. Jena, Q. Wang, M. Marquez, J Am Chem Soc 128, 9741–9745 (2006)

    Article  CAS  PubMed  Google Scholar 

  2. M.K. Shukla, M. Dubey, E. Zakar, R. Namburu, J. Leszczynski, Chem Phys Lett 493, 130–134 (2010)

    Article  CAS  Google Scholar 

  3. Y. Yu, H. Chen, Y. Liu, T. White, Y. Chen, Mater Lett 80, 148–151 (2012)

    Article  CAS  Google Scholar 

  4. Y. Yong, K. Liu, B. Song, P. He, P. Wang, H. Li, Phys Lett A 376, 1465–1467 (2012)

    Article  CAS  Google Scholar 

  5. R. Arenal, O. Stephan, J.L. Cochon, A. Loiseau, J Am Chem Soc 129, 16183–16189 (2007)

    Article  CAS  PubMed  Google Scholar 

  6. M.J. Kim, S. Chatterjee, S.M. Kim, E.A. Stach, M.G. Bradley, M.J. Pender, L.G. Sneddon, B. Maruyama, Nano Lett 8, 3298–3302 (2008)

    Article  CAS  PubMed  Google Scholar 

  7. J. Wang, V.K. Kayastha, Y.K. Yap, Z. Fan, J.G. Lu, Z. Pan, I.N. Ivanov, A.A. Puretzky, D.B. Geohegan, Nano Lett 5, 2528–2532 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Science 269, 966 (1995)

    Article  CAS  PubMed  Google Scholar 

  9. D. Golberg, Y. Bando, O. Stephan, K. Kurashima, Appl Phys Lett 73, 2441–2443 (1998)

    Article  CAS  Google Scholar 

  10. D. Golberg, Y. Bando, K. Kurashima, T. Sato, Scr Mater 44, 1561–1565 (2001)

    Article  CAS  Google Scholar 

  11. D.B. Zhang, E. Akatyeva, T. Dumitrica, Phys Rev B 84, 115431 (2011)

    Article  Google Scholar 

  12. F. Jensen, H. Toftlund, Chem Phys Lett 201, 89–96 (1993)

    Article  CAS  Google Scholar 

  13. H.S. Wu, H. Jiao, Chem Phys Lett 72, 369–372 (2004)

    Article  Google Scholar 

  14. H.S. Wu, X.Y. Cui, X.F. Qin, H. Jiao, J Mole Struct 714, 153–155 (2005)

    Article  CAS  Google Scholar 

  15. H.S. Wu, X.Y. Cui, X.H. Xu, J Mole Struct 717, 107–109 (2005)

    Article  CAS  Google Scholar 

  16. T. Oku, I. Narita, A. Nishiwaki, Mater Manuf Proc 19, 1215–1239 (2004)

    Article  CAS  Google Scholar 

  17. M.R. Hossain, M.M. Hasan, S.U.D. Shamim, T. Ferdous, M.A. Hossain, F. Ahmed, Comput Theor Chem 1197, 113156 (2021)

    Article  Google Scholar 

  18. M. Sheikhi, F. Azarakhshi, E.S. Tafreshi, S. Kaviani, S. Shahab, M. Ahmadianarog, Bull Korean Chem Soc 42(6), 878–888 (2021)

    Article  CAS  Google Scholar 

  19. M. Noormohammadbeigi, S. Kamalinahad, F. Izadi, M. Adimi, A. Ghasemkhani, Mater Res Express 6(12), 1250g2 (2020)

    Article  Google Scholar 

  20. S. Larki, E. Shakerzadeh, E.C. Anota, R. Behjatmanesh-Ardakani, Chem Phys 526, 110424 (2019)

    Article  CAS  Google Scholar 

  21. R. Moladoust, M.D. Esrafili, A. Hosseinian, I. Alkorta, E. Vessally, Mol Phys 117(5), 626–634 (2019)

    Article  CAS  Google Scholar 

  22. E. Vessally, E. Ahmadi, M.D. Esrafili, A. Hosseinian, Monatsh Chem 148(10), 1727–1731 (2017)

    Article  CAS  Google Scholar 

  23. E. Vessally, M.D. Esrafili, R. Nurazar, P. Nematollahi, A. Bekhradnia, Struct Chem 28(3), 735–748 (2017)

    Article  CAS  Google Scholar 

  24. M. Baei, H. Mohammadian, S. Hashemian, Bulg Chem Commun 46, 735–742 (2014)

    Google Scholar 

  25. M.T. Baei, Superlattices Microstruct 58, 31–37 (2013)

    Article  CAS  Google Scholar 

  26. Baei MT (2014) Turk J Chem 531–537

  27. M.T. Baei, A.A. Peyghan, Z. Bagheri, Bull Korean Chem Soc 33(3339), 2012 (2012)

    Google Scholar 

  28. J. Beheshtian, M. Kamfiroozi, Z. Bagheri, A.A. Peyghan, Chin J Chem Phys 25, 60–64 (2012)

    Article  CAS  Google Scholar 

  29. A.A. Peyghan, H. Soleymanabadi, Curr Sci 108, 00113891 (2015)

    Google Scholar 

  30. A. Soltani, M.B. Javan, RSC Adv. 5, 90621–90631 (2015)

    Article  CAS  Google Scholar 

  31. A. Soltani, M.T. Baei, M. Mirarab, M. Sheikhi, E.T. Lemeski, J Phys Chem Solids 75, 1099–1105 (2014)

    Article  CAS  Google Scholar 

  32. A. Soltani, M.T. Baei, E.T. Lemeski, A.A. Pahlevani, Superlattices Microstruct 75, 716–724 (2014)

    Article  CAS  Google Scholar 

  33. M.D. Esrafili, R. Nurazar, Superlattices Microstruct 67, 54–60 (2014)

    Article  CAS  Google Scholar 

  34. M.D. Esrafili, R. Nurazar, Surf Sci 626, 44–48 (2014)

    Article  CAS  Google Scholar 

  35. A. Bahrami, S. Seidi, T. Baheri, M. Aghamohammadi, Superlattices Microstruct 64, 265–273 (2013)

    Article  CAS  Google Scholar 

  36. M.D. Esrafili, R. Nurazar, J Cluster Sci 26, 595–608 (2015)

    Article  CAS  Google Scholar 

  37. A. Soltani, M.T. Baei, E.T. Lemeski, M. Shahini, Superlattices Microstruct 76, 315–325 (2014)

    Article  CAS  Google Scholar 

  38. M.T. Baei, M.R. Taghartapeh, E.T. Lemeski, A. Soltani, Physica B: Condensed Matt 444, 6–13 (2014)

    Article  CAS  Google Scholar 

  39. M. Solimannejad, S. Kamalinahad, E. Shakerzadeh, Phys Chem Research 4, 315–332 (2016)

    Google Scholar 

  40. I. Martínez-Martínez, A. Ordóñez, J. Guerrero, S. Pedersen, A. Miñano, R. Teruel et al., FEBS Lett 583, 3165–3170 (2009)

    Article  PubMed  Google Scholar 

  41. Slooff W, Bont P, Janus J, Pronk M (1994) RIVM Rapport 601014001

  42. F. Lipari, J.M. Dasch, W.F. Scruggs, Environmen Sci Tech 18, 326–330 (1984)

    Article  CAS  Google Scholar 

  43. Ghilarducci DP, Tjeerdema RS (1995) Environ Contam Toxicol 95–146

  44. J.P. Kehrer, S.S. Biswal, Toxicol Sci 57, 6–15 (2000)

    Article  CAS  PubMed  Google Scholar 

  45. R.A. Johnstone, J.R. Plimmer, Chem Rev 59, 885–936 (1959)

    Article  CAS  Google Scholar 

  46. R.O. Beauchamp, D.A. Andjelkovich, A.D. Kligerman, K.T. Morgan, H.A. Heck, V. Feron, Crit Rev Toxicol 14, 309–380 (1985)

    Article  CAS  PubMed  Google Scholar 

  47. Bronstein A, Sullivan J (1992) Hazard Mater Toxicol 1063–1077

  48. S.F. Rastegar, N.L. Hadipour, M.B. Tabar, H. Soleymanabadi, J Mole Model 19, 3733–3740 (2013)

    Article  CAS  Google Scholar 

  49. Y. Sun, L. Chen, F. Zhang, D. Li, H. Pan, J. Ye, Solid State Commun 150, 1906–1910 (2010)

    Article  CAS  Google Scholar 

  50. J.P. Perdew, K. Burke, M. Ernzerhof, Phys Rev Lett 78, 1396 (1997)

    Article  CAS  Google Scholar 

  51. GAMESS Version 30 June 2020, Iowa State University

  52. L. Turi, J.J. Dannenberg, J Phys Chem 97, 2488–2490 (1993)

    Article  CAS  Google Scholar 

  53. S.F. Boys, F.D. Bernardi, Mole Phys 19, 553–566 (1970)

    Article  CAS  Google Scholar 

  54. N.M. O’boyle, A.L. Tenderholt, K.M. Langner, J Comput Chem 29, 839–845 (2008)

    Article  PubMed  Google Scholar 

  55. J. Contreras-García, E.R. Johnson, S. Keinan, R. Chaudret, J.P. Piquemal, D.N. Beratan et al., J Chem Theory Comput 7, 625–632 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  56. E.R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-Garcia, A.J. Cohen, W. Yang, J Am Chem Soc 132, 6498–6506 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. A. Redondo, Y. Zeiri, J.J. Low, W.A. Goddard III., J Chem Phys 79(12), 6410–6415 (1983)

    Article  CAS  Google Scholar 

  58. R. Kumar, N. Goel, M. Kumar, ACS sensors 2(11), 1744–1752 (2017)

    Article  CAS  PubMed  Google Scholar 

  59. A. Bano, J. Krishna, D.K. Pandey, N. Gaur, Phys Chem Chem Phys 21(8), 4633–4640 (2019)

    Article  CAS  PubMed  Google Scholar 

  60. J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Science 287(5453), 622–625 (2000)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Motahareh Noormohammadbeigi :Writing, editting and review, Methodology and Software, data curation. Saeedeh Kamalinahad: Methodology. Hamid Reza Shamlouei: Supervisor. Fatemeh Izadi Mehr:data curation. Raman Rajabi: data curationæ

Corresponding authors

Correspondence to Motahareh Noormohammadbeigi or Saeedeh Kamalinahad.

Ethics declarations

Conflict of Interest

The authors haven’t received any grants for this work. All authors contributed equally to the work. The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noormohammadbeigi, M., Kamalinahad, S., Shamlouei, H.R. et al. In Silico Investigation of Al, Si and Ge Dopants Effect on Structural and Electrical Properties of Pristine B12N12 Nanocage Toward Acrolein Adsorption. J Inorg Organomet Polym 33, 3272–3281 (2023). https://doi.org/10.1007/s10904-023-02764-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02764-z

Keywords

Navigation