Skip to main content
Log in

Functionalization of B33N33H22 Nanosheets with α-Amidino Carboxylic Acids: A DFT Study

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Using density functional theory calculations (based on the B3LYP/6-31G(d) method), we investigated the functionalization of a BN nanosheet (B33N33H22) by different α-amidino carboxylic acids (ACA). It was found that the pristine BN sheet can be noncovalently functionalized by the ACA with an adsorption energy of about − 2.7 kcal/mol. Also, the results showed that structural Stone–Wales (SW) defects significantly increase the adsorption energy. The SW-BN nanosheet transforms from an insulator to a semiconductor by covalent functionalization. Incorporating –NH2 and –NO2 groups in the structure of the ACA molecule increases and decreases the adsorption energy, respectively. The –NH2 group compared to the –NO2 was found to be more favorable for covalent functionalization especially when it is substituted at the meta position of phenyl group of ACA molecule. Investigating the effect of some other electron donating groups showed that the favorability order of applied groups for functionalization is as follows: –N(CH3)2 > –OH > –NH2 > –OCH3 > –Phenyl > –F. Furthermore, it was found that the solubility of BN nanosheets significantly increases, depending on the type of functional group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2009)

    Article  Google Scholar 

  2. Y. Kubota, K. Watanabe, O. Tsuda, T. Taniguchi, Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 317, 932–934 (2007)

    Article  CAS  Google Scholar 

  3. A. Ahmadi Peyghan, H. Soleymanabadi, Z. Bagheri, Hydrogen release from NH3 in the presence of BN graphene: DFT studies. J. Mex. Chem. Soc. 59, 67–73 (2015)

    Google Scholar 

  4. L. Wang, J. Huo, H. Yu, T. Chen, L. Deng, A Novel approach for preparation of nano-gold particles/carbon nanotube composites from gold film, poly(ferrocenylsilane) and acetylene. J. Inorg. Organomet. Polym Mater. 17, 121–125 (2007)

    Article  Google Scholar 

  5. G. Selvaduray, L. Sheet, Aluminium nitride: review of synthesis methods. Mater. Sci. Technol. 9, 463–473 (1993)

    Article  CAS  Google Scholar 

  6. M. Samadizadeh, A.A. Peyghan, S.F. Rastegar, Sensing behavior of BN nanosheet toward nitrous oxide: a DFT study. Chin. Chem. Lett. 26, 1042–1045 (2015)

    Article  CAS  Google Scholar 

  7. J. Nie, Y. Jia, P. Qu, Q. Shi, Carbon nanotube/carbon fiber multiscale composite: influence of interfacial strength on mechanical properties. J. Inorg. Organomet. Polym. Mater. 21, 937–940 (2011)

    Article  CAS  Google Scholar 

  8. D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, C. Zhi, Boron nitride nanotubes and nanosheets. ACS Nano 4, 2979–2993 (2010)

    Article  CAS  Google Scholar 

  9. X. Chen, P. Wu, M. Rousseas, D. Okawa, Z. Gartner, A. Zettl, C.R. Bertozzi, Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J. Am. Chem. Soc. 131, 890–891 (2009)

    Article  CAS  Google Scholar 

  10. K.K. Kim, A. Hsu, X. Jia, S.M. Kim, Y. Shi, M. Hofmann, D. Nezich, J.F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 12, 161–166 (2011)

    Article  Google Scholar 

  11. G. Ciofani, G.G. Genchi, I. Liakos, A. Athanassiou, D. Dinucci, F. Chiellini, V. Mattoli, A simple approach to covalent functionalization of boron nitride nanotubes. J. Colloid Interface Sci. 374, 308–314 (2012)

    Article  CAS  Google Scholar 

  12. H. Zeng, C. Zhi, Z. Zhang, X. Wei, X. Wang, W. Guo, Y. Bando, D. Golberg, White graphenes”: boron nitride nanoribbons via boron nitride nanotube unwrapping. Nano Lett. 10, 5049–5055 (2010)

    Article  CAS  Google Scholar 

  13. C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. Shepard, Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010)

    Article  CAS  Google Scholar 

  14. J. Sławińska, I. Zasada, Z. Klusek, Energy gap tuning in graphene on hexagonal boron nitride bilayer system. Phys. Rev. B 81, 155433–155439 (2010)

    Article  Google Scholar 

  15. J. Jalilian, H. Zahrabi, J. Jalilian, F. Soofivand, S. Farshadfar, S. Naderizadeh, N. Rahimi, Electronic and magnetic properties of Fe, Co and Ni atomic chains encapsulated in BN nanotube bundle. Comput. Theor. Chem. 979, 10–16 (2012)

    Article  CAS  Google Scholar 

  16. C. Zhi, Y. Bando, C. Tang, S. Honda, K. Sato, H. Kuwahara, D. Golberg, Covalent functionalization: towards soluble multiwalled boron nitride nanotubes. Angew. Chem. Int. Ed. 44, 7932–7935 (2005)

    Article  CAS  Google Scholar 

  17. A. Bahrami, M.B. Qarai, N.L. Hadipour, The electronic and structural responses of B12N12 nanocage toward the adsorption of some nonpolar X2 molecules: X=(Li, Be, B, N, O, F. Cl, Br, I): a DFT approach, Comput Theor Chem. 1108, 63–69 (2017)

    Article  CAS  Google Scholar 

  18. C. Zhi, Y. Bando, C. Tang, Q. Huang, D. Golberg, Boron nitride nanotubes: functionalization and composites. J. Mater. Chem. 18, 3900–3908 (2008)

    Article  CAS  Google Scholar 

  19. J. Beheshtian, A.A. Peyghan, M.B. Tabar, Z. Bagheri, DFT study on the functionalization of a BN nanotube with sulfamide. Appl. Surf. Sci. 266, 182–187 (2013)

    Article  CAS  Google Scholar 

  20. C.H. Lee, S. Bhandari, B. Tiwari, N. Yapici, D. Zhang, Y.K. Yap, Boron nitride nanotubes: recent advances in their synthesis, functionalization, and applications. Molecules 21, 922 (2016)

    Article  Google Scholar 

  21. S. Danti, G. Ciofani, S. Moscato, D. D’Alessandro, E. Ciabatti, C. Nesti, R. Brescia, G. Bertoni, A. Pietrabissa, M. Lisanti, Boron nitride nanotubes and primary human osteoblasts: in vitro compatibility and biological interactions under low frequency ultrasound stimulation. Nanotechnology 24, 465102 (2013)

    Article  Google Scholar 

  22. S. Pal, S. Vivekchand, A. Govindaraj, C. Rao, Functionalization and solubilization of BN nanotubes by interaction with Lewis bases. J. Mater. Chem. 17, 450–452 (2007)

    Article  CAS  Google Scholar 

  23. E.R. Pérez, R.H. Santos, M.T. Gambardella, L.G. De Macedo, U.P. Rodrigues-Filho, J.-C. Launay, D.W. Franco, Activation of carbon dioxide by bicyclic amidines. J. Org. Chem. 69, 8005–8011 (2004)

    Article  Google Scholar 

  24. M. Schmidt et al., General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347–1363 (1993)

    Article  CAS  Google Scholar 

  25. D. Hossain, C.U. Pittman, S.R. Gwaltney, Structures and stabilities of the metal doped gold nano-clusters: M@Au10 (M = W, Mo, Ru, Co). J. Inorg. Organomet. Polym. Mater. 24, 241–249 (2014)

    Article  CAS  Google Scholar 

  26. F. Mashhadban, A.S. Ghasemi, F. Ravari, The Effects of Zn doping on the interaction of a single walled carbon nanotube with penicillamine drug: a DFT study. J. Inorg. Organomet. Polym. Mater. 28, 954–961 (2018)

    Article  CAS  Google Scholar 

  27. G.W. Waldhart, A.J. Webster, B.M. Schreiber, R.B. Siedschlag, J.S. D’Acchioli, The curious case of the allyl ligand: a study in applying the 18-electron rule. J. Inorg. Organomet. Polym. Mater. 24, 87–94 (2014)

    Article  CAS  Google Scholar 

  28. K.M. Eid, H.Y. Ammr, Adsorption of SO2 on Li atoms deposited on MgO (1 0 0) surface: DFT calculations. Appl. Surf. Sci. 257, 6049–6058 (2011)

    Article  CAS  Google Scholar 

  29. I.K. Petrushenko, K.B. Petrushenko, Physical adsorption of N-containing heterocycles on graphene-like boron nitride-carbon heterostructures: a DFT study. Comput. Theor. Chem. 1117, 162–168 (2017)

    Article  CAS  Google Scholar 

  30. S. Tomić, B. Montanari, N.M. Harrison, The group III–V’s semi-conductor energy gaps predicted using the B3LYP hybrid functional. Physica E 40, 2125–2127 (2008)

    Article  Google Scholar 

  31. T. Koopmans, Ordering of wave functions and eigenenergies to the individual electrons of an atom. Physica 1, 104–113 (1933)

    Article  CAS  Google Scholar 

  32. L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, B.I. Yakobson, Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209–3215 (2010)

    Article  CAS  Google Scholar 

  33. W. Chen, Y. Li, G. Yu, Z. Zhou, Z. Chen, Electronic structure and reactivity of boron nitride nanoribbons with stone-wales defects. J. Chem. Theory Comput. 5, 3088–3095 (2009)

    Article  CAS  Google Scholar 

  34. Y. Li, Z. Zhou, D. Golberg, Y. Bando, P.V.R. Schleyer, Z. Chen, Stone—wales defects in single-walled boron nitride nanotubes: formation energies, electronic structures, and reactivity. J. Phys. Chem. C 112, 1365–1370 (2008)

    Article  CAS  Google Scholar 

  35. J. Aihara, Reduced HOMO – LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. J. Phys. Chem. A 103, 7487–7495 (1999)

    Article  CAS  Google Scholar 

  36. C. Hansch, A. Leo, R. Taft, A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 91, 165–195 (1991)

    Article  CAS  Google Scholar 

  37. B. Mennucci, Polarizable continuum model. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 386–404 (2012)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Azizian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaghari, Z., Azizian, J. Functionalization of B33N33H22 Nanosheets with α-Amidino Carboxylic Acids: A DFT Study. J Inorg Organomet Polym 29, 1076–1083 (2019). https://doi.org/10.1007/s10904-018-0996-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0996-3

Keywords

Navigation