Skip to main content
Log in

Biosynthesis of Silver Nanoparticles Using Astragalus flavesces Leaf: Identification, Antioxidant Activity, and Catalytic Degradation of Methylene Blue

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Nanoparticles (NPs) are used in many fields. For example, electronics, optics, textiles, pharmaceuticals, catalysts, water treatment, and environmental remediation. In this work, the biosynthesis of silver nanoparticles (Af-AgNPs) from Astragalus flavesces leaf was synthesized. Af-AgNPs were featured by UV–visible, Fourier-transform infrared spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy, and powdered X-ray diffraction (XRD) analyses. The maximum absorption peak was detected at 417 nm. The average size of Af-AgNPs was 63.15 nm and their spherical shape was determined by SEM spectral analysis. XRD spectral analysis at 2θ degrees of 38.1°, 44.3°, 64.4°, and 77.4° can be indexed to the (111), (200), (220), and (311) face-centered cubic crystalline structure. Af-AgNPs have the potential of − 29.1 mV which indicated the stability of nanoparticles as well as repulsion among the particles. Antioxidant activities of Af-AgNPs and the extract were investigated by the DPPH·, ABTS·+, and FRAP assays. Af-AgNPs showed antioxidant activity to a degree that can be used in the food and pharmaceutical industries. The catalytic activity of Af-AgNPs was studied and at 28 h, 69% degradation was observed in the methylene blue solution.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data are given in the manuscript and they are confidential.

References

  1. H.B. Herbin, M. Aravind, M. Amalanathan, M.S.M. Mary, M.M. Lenin, C. Parvathiraja, M.R. Siddiqui, S.M. Wabaidur, M.A. Islam, J. Inorg. Organomet. Polym. Mater. 32, 1103 (2022). https://doi.org/10.1007/s10904-021-02210-y

    Article  CAS  Google Scholar 

  2. D.A. Lomeli-Rosales, A. Zamudio-Ojeda, O.K. Reyes-Maldonado, M.E. Lopez-Reyes, G.C. Basulto-Padilla, E.J. Lopez-Naranjo, V.M. Zuniga-Mayo, G. Velazquez-Juarez, Molecules (Basel, Switzerland) 27(5), 1692 (2022). https://doi.org/10.3390/molecules27051692

    Article  CAS  Google Scholar 

  3. H. Tolouietabar, A.A. Hatamnia, R. Sahraeir, E. Soheyli, J. Nanostruct. 10(1), 44 (2020). https://doi.org/10.22052/JNS.2020.01.006

    Article  CAS  Google Scholar 

  4. L.N. Khanal, K.R. Sharma, H. Paudyal, K. Parajuli, B. Dahal, G.C. Ganga, Y.R. Pokharel, S.K. Kalauni, J. Nanomater. (2022). https://doi.org/10.1155/2022/1832587

    Article  Google Scholar 

  5. B.M. Abdallah, E.M. Ali, ACS Omega 6(12), 8151 (2021). https://doi.org/10.1021/acsomega.0c06009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. A. Karmous, K. Pandey, B. Haj, A. Chaoui, Biol. Trace Elem. Res. 196, 330 (2020). https://doi.org/10.1007/s12011-019-01895-0

    Article  CAS  PubMed  Google Scholar 

  7. G. Pradheesh, S. Suresh, J. Suresh, V. Alexramani, Int. J. Pharm. Investig. 10(2), 146 (2020). https://doi.org/10.5530/ijpi.2020.2.27

    Article  CAS  Google Scholar 

  8. L.H. Abdel-Rahman, B.S. Al-Farhan, D. Abou El-ezz, M.A. Abd–El, M.M. Sayed, A.M. Zikry, Abu-Dief, J. Inorg. Organomet. Polym. 32, 1422 (2022). https://doi.org/10.1007/s10904-021-02186-9

    Article  CAS  Google Scholar 

  9. K.S. Aiswariya, V. Jose, J. Inorg, Organomet. Polym. 31, 3111 (2021). https://doi.org/10.1007/s10904-021-01951-0

    Article  CAS  Google Scholar 

  10. K. Dulta, G.K. Ağçeli, P. Chauhan, P.K. Chauhan, J. Inorg. Organomet. Polym. 31, 1846 (2021). https://doi.org/10.1007/s10904-020-01837-7

    Article  CAS  Google Scholar 

  11. M.S. Rajiri, M. Aminsalehi, M. Shahbandeh, A. Maleki, P. Jonoubi, A.C. Rad, Toxicol. Environ. Health Sci. (2020). https://doi.org/10.1007/s13530-020-00067-1

    Article  Google Scholar 

  12. S. Rajput, D. Kumar, V. Agrawal, Plant Cell. Rep. 39, 921 (2020). https://doi.org/10.1007/s00299-020-02539-7

    Article  CAS  PubMed  Google Scholar 

  13. Y. Wang, X.D. Zhang, Y.Z. Bai, W. Li, X. Li, X.L. Xing, C.L. Wang, L.L. Gao, M. Yogi, M.K. Swamy, K. Dupadahalli, G.R. Rudramurthy, B. Purushotham, K.C. Rohit, J.H. Fu, J. Nanosci. Nanotechnol 20(7), 4143 (2020). https://doi.org/10.1166/jnn.2020.17524

    Article  CAS  PubMed  Google Scholar 

  14. R. Sattari, G.R. Khayati, R. Hoshyar, J. Clust. Sci. 32, 593 (2020). https://doi.org/10.1007/s10876-020-01818-3

    Article  CAS  Google Scholar 

  15. E.Y. Ahn, Y. Park, Mater. Sci. Eng. C 116, 111253 (2020). https://doi.org/10.1016/j.msec.2020.111253

    Article  CAS  Google Scholar 

  16. P. Popova, Y. Zarev, R. Mihaylova, G. Momekov, I. Ionkova, Pharmacia 68(1), 217 (2021). https://doi.org/10.3897/pharmacia.68.e63421

    Article  Google Scholar 

  17. B. Tunçkol, Z. Aytaç, N. Aksoy, A. Fişne, Acta Bot. Croat 79(2), 131 (2020). https://doi.org/10.37427/botcro-2020-023

    Article  Google Scholar 

  18. P. Liu, H. Zhao, Y. Luo, Aging Dis. 8(6), 868 (2017). https://doi.org/10.14336/AD.2017.0816

    Article  PubMed  PubMed Central  Google Scholar 

  19. X. Li, L. Qu, Y. Dong et al., Molecules 19(11), 18850 (2014). https://doi.org/10.3390/molecules191118850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. M. Mahmoudi, R. Abdellaoui, F. Boughalleb, B. Yahia, M. Mabrouk, N. Nasri, Food Chem. 339, 127824 (2021). https://doi.org/10.1016/j.foodchem.2020.127824

    Article  CAS  PubMed  Google Scholar 

  21. C. Sarikurkcu, G. Zengin, Biology 9, 231 (2020). https://doi.org/10.3390/biology9080231

    Article  CAS  PubMed Central  Google Scholar 

  22. H.D. Beyene, A.A. Werkneh, H.K. Bezabh, T.G. Ambaye, SM&T 13, 18 (2017). https://doi.org/10.1016/j.susmat.2017.08.001

    Article  CAS  Google Scholar 

  23. Z. Askari, M.R. Vahabi, A. Allafchian, S.A. Mousavi, S.A.H. Jalali, Micro Nano Lett. 15(2), 66 (2020). https://doi.org/10.1049/mnl.2019.0306

    Article  CAS  Google Scholar 

  24. M. Sharifi-Rad, P. Pohl, F. Epifano, J.M. Alvarez-Suarez, Nanomaterials 10, 2383 (2020). https://doi.org/10.3390/nano10122383

    Article  CAS  PubMed Central  Google Scholar 

  25. S. Khorrami, F.J. Najafabadi, A. Zarepour, A. Zarrabi, BioNanoSci. 9, 603 (2019). https://doi.org/10.1007/s12668-019-00646-8

    Article  Google Scholar 

  26. E.N. Gecer, J. Inorg, Organomet. Polym. 31, 4402 (2021). https://doi.org/10.1007/s10904-021-02057-3

    Article  CAS  Google Scholar 

  27. E.N. Gecer, R. Erenler, C. Temiz, N. Genc, I. Yildiz, Part. Sci. Technol. 40(1), 50 (2021). https://doi.org/10.1080/02726351.2021.1904309

    Article  CAS  Google Scholar 

  28. A. Sahin Yaglioglu, F. Eser, M.S. Yaglioglu, I. Demirtas, Flavour. Fragr. J. 35, 511 (2020). https://doi.org/10.1002/ffj.3586

    Article  CAS  Google Scholar 

  29. A. Guzel, H. Aksit, M. Elmastas, R. Erenler, Pharmacogn. Mag. 13(50), 316 (2017). https://doi.org/10.4103/0973-1296.204556

    Article  PubMed  PubMed Central  Google Scholar 

  30. M. Oyaizu, Japanese J. Nutr. Dietetics 44, 307 (1986). https://doi.org/10.5264/eiyogakuzashi.44.307

    Article  CAS  Google Scholar 

  31. V.S. Suvith, D. Philip, S. Acta, A. Mol, Biomol. Spectrosc. 118, 526 (2014). https://doi.org/10.1016/j.saa.2013.09.016

    Article  CAS  Google Scholar 

  32. S.B. Aziz, G. Hussein, M. Brza, S.J. Mohammed, R.T. Abdulwahid, S. Raza Saeed, A. Hassanzadeh, Nanomaterials 9(11), 1557 (2019). https://doi.org/10.3390/nano9111557

    Article  CAS  Google Scholar 

  33. S. Jain, M.S. Mehata, Sci. Rep. 7, 15867 (2017). https://doi.org/10.1038/s41598-017-15724-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. T. Shanmugasundaram, M. Radhakrishnan, V. Gopikrishnan, Colloids Surf. B Biointerfaces 111, 680 (2013). https://doi.org/10.1016/j.colsurfb.2013.06.045

    Article  CAS  PubMed  Google Scholar 

  35. A.J. Kora, J. Arunachalam, J. Nanomater. (2012). https://doi.org/10.1155/2012/869765

    Article  Google Scholar 

  36. Y. Ma, C. Liu, D. Qu, Y. Chen, M. Huang, Y. Liu, Biomed. Pharmacother. 89, 351 (2017). https://doi.org/10.1016/j.biopha.2017.02.009

    Article  CAS  PubMed  Google Scholar 

  37. C.N.R. Rao, G.U. Kulkarni, P.J. Thomas, P.P. Edwards, Chem. Eur. J. 8, 28 (2002)

    Article  CAS  Google Scholar 

  38. N. Cheval, N. Gindy, C. Flowkes, A. Fahmi, Nanoscale Res. Lett. 7, 182 (2012). https://doi.org/10.1186/1556-276X-7-182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Y. Galagan, W.-F. Su, J. Photochem, Photobiol. A 195, 378 (2008). https://doi.org/10.1016/j.jphotochem.2007.11.005

    Article  CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the whole article.

Corresponding author

Correspondence to Ayse Sahin Yaglioglu.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethical Approval

Ethical rules are followed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahin Yaglioglu, A., Erenler, R., Gecer, E.N. et al. Biosynthesis of Silver Nanoparticles Using Astragalus flavesces Leaf: Identification, Antioxidant Activity, and Catalytic Degradation of Methylene Blue. J Inorg Organomet Polym 32, 3700–3707 (2022). https://doi.org/10.1007/s10904-022-02362-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02362-5

Keywords

Navigation