Skip to main content
Log in

Ti(IV)-Exchanged Nano-ZIF-8 and Nano-ZIF-67 for Enhanced Photocatalytic Oxidation of Hydroquinone

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The metal centres of nano-zeolitic imidazolate framework-8(Zinc) and 67(Cobalt) [nZIF-8(Zn) and nZIF-67(Co)] were partially exchanged with titanium (Ti) centres to form bimetallic nZIF-8(Zn/Ti) (52% Ti4+) and nZIF-67(Co/Ti) (38% Ti4+) respectively, for enhanced photocatalytic performance. A morphological and structural analysis by scanning electron microscopy, energy dispersive spectroscopy (EDS)-mapping and powder X-ray diffraction showed that the particle size, distribution, and the structural integrity of the Sodalite frameworks of the parent ZIFs were retained during the exchange process to form the new bimetallic Ti-ZIFs. Fourier transform infrared spectroscopy confirmed that no additional chemical bonds were formed during the process. X-ray photoelectron spectroscopy binding energies confirmed the preservation of the Zn(II), Co(II) and Ti(IV) oxidation states, as well as the Ti-content, consistent with inductively coupled plasma-optical emission spectrometry and EDS measurements. The Ti-exchanged ZIFs showed higher activity during the photocatalytic oxidation of hydroquinone in comparison with their parent ZIFs. Their kinetic rates were nearly five times faster than those of the parent ZIFs, with the first-order rate constants k = 0.189 min−1 for nZIF-8(Zn/Ti) and k = 0.139 min−1 for nZIF-67(Co/Ti). These catalysts are efficient, stable, and reusable for three photocatalytic cycles without a significant loss of catalytic activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 3
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 4
Fig. 11

Similar content being viewed by others

References

  1. Y. Sakamaki, M. Tsuji, Z. Heidrick, O. Watson, J. Durchman, C. Salmon, S.R. Burgin, H. Beyzavi, J. Chem. Educ. (2020). https://doi.org/10.1021/acs.jchemed.9b01166

    Article  PubMed  PubMed Central  Google Scholar 

  2. Y. Cheng, D. Shi, Y.D. Yuan, D. Zhao, J. Chem. Educ. (2020). https://doi.org/10.1021/acs.jchemed.0c00311

    Article  Google Scholar 

  3. S.L. Griffin, N.R. Champness, Coord. Chem. Rev. (2020). https://doi.org/10.1016/j.ccr.2020.213295

    Article  Google Scholar 

  4. G.A. Haghighat, S. Sadeghi, M.H. Saghi, S.K. Ghadiri, I. Anastopoulos, D.A. Giannakoudakis, J.C. Colmenares, M. Shams, Colloids Surf. A (2020). https://doi.org/10.1016/j.colsurfa.2020.125391

    Article  Google Scholar 

  5. A. Zanon, F. Verpoort, Chem. Rev. (2017). https://doi.org/10.1016/j.ccr.2017.09.030

    Article  Google Scholar 

  6. Y. Liu, H. Cheng, M. Cheng, Z. Liu, D. Huang, G. Zhang, B. Shao, Q. Liang, S. Luo, T. Wu, S. Xiao, Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2020.127914

    Article  PubMed  PubMed Central  Google Scholar 

  7. M. Kalaj, S.M. Cohen, ACS. Cent. Sci. (2020). https://doi.org/10.1021/acscentsci.0c00690

    Article  PubMed  PubMed Central  Google Scholar 

  8. L.E. Mphuthi, E. Erasmus, E.H.G. Langner, ACS Omega (2021). https://doi.org/10.1021/acsomega.1c04142

    Article  PubMed  PubMed Central  Google Scholar 

  9. M. Kim, J. Cahill, H. Fei, K. Prather, S. Cohen, J. Am. Chem. Soc. (2012). https://doi.org/10.1021/ja3079219

    Article  PubMed  PubMed Central  Google Scholar 

  10. H. Assi, G. Mouchaham, N. Steunou, T. Devic, C. Serre, Chem. Soc. Rev. (2017). https://doi.org/10.1039/C7CS00001D

    Article  PubMed  Google Scholar 

  11. M.A. Nasalevich, M. van der Veen, F. Kapteijn, J. Gascon, Cryst. Eng. Comm. (2014). https://doi.org/10.1039/C4CE00032C

    Article  Google Scholar 

  12. S. Abedia, A. Morsali, New J. Chem. (2015). https://doi.org/10.1039/C4NJ01536C

    Article  Google Scholar 

  13. H.L. Nguyen, New J. Chem. (2017). https://doi.org/10.1039/C7NJ03153J

    Article  Google Scholar 

  14. J. Zhu, P. Li, W. Guo, Y. Zhao, R. Zou, Coord. Chem. Rev. (2018). https://doi.org/10.1016/j.ccr.2017.12.013

    Article  Google Scholar 

  15. H.L. Nguyen, J. Phys. Energy (2021). https://doi.org/10.1088/2515-7655/abe3c9

    Article  Google Scholar 

  16. Y. Yan, C. Li, Y. Wu, J. Gao, Q. Zhang, J. Mater. Chem. A (2020). https://doi.org/10.1039/D0TA03749D

    Article  Google Scholar 

  17. W.H. Fang, L. Zhang, J. Zhang, Chem. Soc. Rev. (2018). https://doi.org/10.1039/C7CS00511C

    Article  PubMed  Google Scholar 

  18. C. Tsai, J.W. Niemantsverdriet, E.H.G. Langner, Microporous Mesoporous Mater. (2018). https://doi.org/10.1016/j.micromeso.2017.11.024

    Article  Google Scholar 

  19. H. Fei, J. Cahill, K. Prather, S. Cohen, Inorg. Chem. (2013). https://doi.org/10.1021/ic400048g

    Article  PubMed  Google Scholar 

  20. F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (ULVAC-PHI Inc, Enzo, 1995)

    Google Scholar 

  21. E. Guibal, T. Vincent, E. Touraud, S. Colombo, A. Ferguson, J. Appl. Polym. Sci. (2006). https://doi.org/10.1002/app.23702

    Article  Google Scholar 

  22. R. Maggi, C.G. Piscopo, G. Sartori, L. Storaro, E. Moretti, Appl. Catal. A (2012). https://doi.org/10.1016/j.apcata.2011.10.032

    Article  Google Scholar 

  23. C. Cheng, Y. Chan, Y. Tzou, K. Chen, Y. Liu, J. Spectrosc. (2016). https://doi.org/10.1155/2016/7958351

    Article  Google Scholar 

  24. A. Tyagi, S. Das, V.C. Srivastava, Environ. Eng. Res. (2018). https://doi.org/10.4491/eer.2018.232

    Article  Google Scholar 

  25. S.A. Ahmed, D. Bagchi, H.A. Katouah, M.N. Hasan, H.M. Altass, S.K. Pal, Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-55542-8

    Article  PubMed  PubMed Central  Google Scholar 

  26. M. Wang, J. Liu, C. Guo, X. Gao, C. Gong, Y. Wang, B. Liu, X. Li, G.G. Gurzadyana, L. Sun, J. Mater. Chem. A (2018). https://doi.org/10.1039/C8TA00154E

    Article  Google Scholar 

  27. S. Meshkat, S. Kaliaguine, D. Rodrigue, Sep. Purif. Technol. (2019). https://doi.org/10.1016/j.seppur.2019.116150

    Article  Google Scholar 

  28. I.U. Khan, M.H.D. Othman, A. Jilani, A.F. Ismail, H. Hashim, J. Jaafar, M.A. Rahman, G.U. Rehman, Arab. J. Chem. (2018). https://doi.org/10.1016/j.arabjc.2018.07.012

    Article  Google Scholar 

  29. Y. Li, K. Zhou, M. He, J. Yao, Microporous Mesoporous Mater. (2016). https://doi.org/10.1016/j.micromeso.2016.07.039

    Article  Google Scholar 

  30. J. Zaręba, M. Nyk, M. Samoć, Cryst. Growth Des. (2016). https://doi.org/10.1021/acs.cgd.6b01090

    Article  Google Scholar 

  31. W. Sun, X. Zhai, L. Zhao, Chem. Eng. J. 289, 59 (2016). https://doi.org/10.1016/j.cej.2015.12.076

    Article  CAS  Google Scholar 

  32. F. Song, Y. Cao, Y. Zhao, R. Jiang, Q. Xu, J. Yan, Q. Zhong, J. Nanomater. (2020). https://doi.org/10.1155/2020/1508574

    Article  Google Scholar 

  33. T.R. Gengenbach, G.H. Major, M.R. Linford, C.D. Easton, J. Vac. Sci. Technol. A (2021). https://doi.org/10.1116/6.0000682

    Article  Google Scholar 

  34. G. Greczynski, L. Hultman, Chem. Phys. Chem. (2017). https://doi.org/10.1002/cphc.201

    Article  PubMed  Google Scholar 

  35. M.R.A. Hamid, S. Park, J.S. Kim, Y.M. Lee, H. Jeong, J. Mater. Chem. A (2019). https://doi.org/10.1039/C9TA00837C

    Article  Google Scholar 

  36. X. Chen, X. Peng, L. Jiang, X. Yuan, H. Yu, H. Wang, J. Zhang, Q. Xia, Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.125080

    Article  PubMed  PubMed Central  Google Scholar 

  37. M.C. Biesinger, L.W.M. Lau, A. Gerson, R.S.C. Smart, Appl. Surf. Sci. (2010). https://doi.org/10.1016/j.apsusc.2010.07.086

    Article  Google Scholar 

  38. M. Thanh, T. Thien, P. Du, N. Hung, D. Khieu, J. Por. Mater. (2018). https://doi.org/10.1007/s10934-017-0498-7

    Article  Google Scholar 

  39. A. Nqombolo, T.S. Munonde, T.A. Makhetha, R.M. Moutloali, P.N. Nomngongo, J. Mater. Res. Technol. (2021). https://doi.org/10.1016/j.jmrt.2021.03.113

    Article  Google Scholar 

  40. D. Saliba, M. Ammar, M. Rammal, M. Al-Ghoul, M. Hmadeh, J. Am. Chem. Soc. (2018). https://doi.org/10.1021/jacs.7b11589

    Article  PubMed  Google Scholar 

  41. W. Wu, J. Su, M. Jia, Z. Li, G. Liu, W. Li, Sci. Adv. (2020). https://doi.org/10.1126/sciadv.aax7270

    Article  PubMed  PubMed Central  Google Scholar 

  42. T. Bak, W. Li, J. Nowotny, A.J. Atanacio, J. Davisc, J. Phys. Chem. A (2015). https://doi.org/10.1021/acs.jpca.5b05031

    Article  PubMed  Google Scholar 

  43. J.T.R. Fiekkies, E. Fourie, E. Erasmus, Appl. Nanosci. (2021). https://doi.org/10.1007/s13204-021-01955-9

    Article  Google Scholar 

  44. N. Akai, A. Kawai, K. Shibuya, J. Photochem. Photobiol. A (2011). https://doi.org/10.1016/j.jphotochem.2011.08.016

    Article  Google Scholar 

  45. H.W. Lerner, G. Margraf, T. Kretz, M. Wagner, O. Schiemann, J.W. Bats, G. Durnerc, F.F. de Bianid, P. Zanellod, M. Boltea, Z. Naturforsch. (2006). https://doi.org/10.1515/znb-2006-0304

    Article  Google Scholar 

  46. R. Mogale, M.K.G. Akpomie, J. Conradie, E.H.G. Langner, J. Environ. Manage. (2022). https://doi.org/10.1016/j.jenvman.2021.114166

    Article  PubMed  Google Scholar 

  47. P. Bernard, P. Stelmachowski, P. Broś, W. Makowski, A. Kotarba, J. Chem. Educ. (2021). https://doi.org/10.1021/acs.jchemed.0c01101

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial assistance by SASOL through the University Collaboration Grant. We also thank Professor E. Erasmus for XPS analysis, the Analytical Chemistry Section for their assistance with the ICP-OES study, Ithemba Labs (Cape Town) for the PXRD analysis, and the Centre for Microscopy (UFS) for the SEM-EDX analyses.

Funding

This study was funded through a SASOL University Collaboration Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst H. G. Langner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2220 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mphuthi, L.E., Maseme, M.R. & Langner, E.H.G. Ti(IV)-Exchanged Nano-ZIF-8 and Nano-ZIF-67 for Enhanced Photocatalytic Oxidation of Hydroquinone. J Inorg Organomet Polym 32, 2664–2678 (2022). https://doi.org/10.1007/s10904-022-02327-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02327-8

Keywords

Navigation