Skip to main content

Advertisement

Log in

Enhanced the Synergistic Effect of Tetracycline Adsorption and Photocatalytic Degradation on a Mesoporous Carbon Nitride

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

A mesoporous g-C3N4 with guanidine hydrochloride as precursor was prepared by molten salt assisted hard template of silica (SiO2) aerogel for photocatalytic degradation of tetracycline (TC). The study shows that the successfully synthesized mesoporous g-C3N4 presented a coral-like rod shaped and heptazine ring structure. When the amount of SiO2 aerogel template was 1.4 g, the lower band gap (2.31 eV) of the sample (GM-1.4) with the lower interfacial resistance was displayed. The photocatalytic degradation rate of GM-1.4 for TC reached to 100% under visible illumination for 210 min, and the degradation efficiency of TC was enhanced with the synergistic effect of adsorption. Furthermore, the rich porous structure provided more active sites, boosted the separation and transfer of photoexcited charge carriers, and then enhanced the production of main active species ·O2 and h+, resulting in the efficient destruction of the intrinsic structure and functional groups of TC molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article. Raw data supporting the findings of this study are available from the corresponding author [Zheng Liu] on request.

References

  1. X. Wen, Z. Zeng, Du. Chunyan, D. Huang, G. Zeng, R. Xiao, C. Lai, Xu. Piao, C. Zhang, J. Wan, Hu. Liang, L. Yin, C. Zhou, R. Deng, Chemosphere 222, 865 (2019). https://doi.org/10.1016/j.chemosphere.2019.02.020

    Article  CAS  PubMed  Google Scholar 

  2. F. Guo, M. Li, H. Ren, X. Huang, K. Shu, W. Shi, Lu. Changyu, Sep. Purif. Technol. 228, 115770 (2019). https://doi.org/10.1016/j.seppur.2019.115770

    Article  CAS  Google Scholar 

  3. Z. Ren, F. Chen, K. Wen, Lu. Jinfeng, J. Photoch. Photobio. A. Chem. 389, 112217 (2020). https://doi.org/10.1016/j.jphotochem.2019.112217

    Article  CAS  Google Scholar 

  4. S. Cao, J. Low, Yu. Jiaguo, M. Jaroniec, Adv Mater 27, 2150 (2015). https://doi.org/10.1002/adma.201500033

    Article  CAS  PubMed  Google Scholar 

  5. M. Ismael, J. Alloy. Compd. 846, 156446 (2020). https://doi.org/10.1016/j.jallcom.2020.156446

    Article  CAS  Google Scholar 

  6. L. Tian, J. Li, F. Liang, J. Wang, S. Li, H. Zhang, S. Zhang, Appl. Catal. B. Environ. 225, 307 (2018). https://doi.org/10.1016/j.apcatb.2017.11.082

    Article  CAS  Google Scholar 

  7. Z. Shu, Y. Wang, W. Wang, J. Zhou, T. Li, X. Liu, Y. Tan, Z. Zhao, Int J. Hydrogen. Energ. 44, 748 (2019). https://doi.org/10.1016/j.ijhydene.2018.11.025

    Article  CAS  Google Scholar 

  8. B.L. Phoon, C.W. Lai, G.-T. Pan, T.C.-K. Yang, J.C. Juan, Nanomaterials (Basel), 11, 2041 (2021). https://doi.org/10.3390/nano11082041

    Article  CAS  Google Scholar 

  9. J.P. Paraknowitsch, J. Zhang, D. Su, A. Thomas, M. Antonietti, Adv. Mater. 22, 87 (2010). https://doi.org/10.1002/adma.200900965

    Article  CAS  PubMed  Google Scholar 

  10. Q. Li, J. Yang, D. Feng, Z. Wu, Q. Wu, S.S. Park, C.-S. Ha, D. Zhao, Nano. Res. 3, 632 (2010). https://doi.org/10.1007/s12274-010-0023-7

    Article  CAS  Google Scholar 

  11. H.-M. Zhao, C.-M. Di, L. Wang, Y. Chun, Xu. Qin-Hua, Micropor. Mesopor. Mat. 208, 98 (2015). https://doi.org/10.1016/j.micromeso.2015.01.047

    Article  CAS  Google Scholar 

  12. C.-B. Chen, C.-X. Li, Y.-J. Zhang, Y.-J. Wang, Lu. Jia-Yuan, H.-Q. Liu, W.-W. Li, Environ. Sci Nano 5, 2966 (2018). https://doi.org/10.1039/c8en00908b

    Article  CAS  Google Scholar 

  13. Z. Liu, X. He, X. Yang, H. Ding, D. Wang, D. Ma, Q. Feng, J. Mater. Sci. 56, 11248 (2021). https://doi.org/10.1007/s10853-021-05994-z

    Article  CAS  Google Scholar 

  14. X. Bai, J. Li, C. Cao, S. Hussain, Mater. Lett. 65, 1101 (2011). https://doi.org/10.1016/j.matlet.2011.01.008

    Article  CAS  Google Scholar 

  15. Y. Ham, K. Maeda, D. Cha, K. Takanabe, K. Domen, Chem. Asian. J. 8, 218 (2013). https://doi.org/10.1002/asia.201200781

    Article  CAS  PubMed  Google Scholar 

  16. K. Schwinghammer, B. Tuffy, M.B. Mesch, E. Wirnhier, C. Martineau, F. Taulelle, W. Schnick, J. Senker, B.V. Lotsch, Angew. Chem. Int. Ed. Engl. 52, 2435 (2013). https://doi.org/10.1002/anie.201206817

    Article  CAS  PubMed  Google Scholar 

  17. W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Chem. Rev. 116, 7159 (2016). https://doi.org/10.1021/acs.chemrev.6b00075

    Article  CAS  PubMed  Google Scholar 

  18. Z. Chen, A. Savateev, S. Pronkin, V. Papaefthimiou, C. Wolff, M.G. Willinger, E. Willinger, D. Neher, M. Antonietti, D. Dontsova, Adv. Mater. 29, 1700555 (2017). https://doi.org/10.1002/adma.201700555

    Article  CAS  Google Scholar 

  19. G. Zhang, Z.A. Lan, X. Wang, Angew. Chem. Int. Ed. Engl. 55, 15712 (2016). https://doi.org/10.1002/anie.201607375

    Article  CAS  PubMed  Google Scholar 

  20. H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao, C. Zhou, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, T. Zhang, Adv. Mater. 29, 1605148 (2017). https://doi.org/10.1002/adma.201605148

    Article  CAS  Google Scholar 

  21. G. Liu, G. Zhao, W. Zhou, Y. Liu, H. Pang, H. Zhang, D. Hao, X. Meng, P. Li, T. Kako, J. Ye, Adv. Funct. Mater. 26, 6822 (2016). https://doi.org/10.1002/adfm.201602779

    Article  CAS  Google Scholar 

  22. W. Shan, Hu. Yun, Z. Bai, M. Zheng, C. Wei, Appl. Catal. B. Environ. 188, 1 (2016). https://doi.org/10.1016/j.apcatb.2016.01.058

    Article  CAS  Google Scholar 

  23. P. Xia, M. Antonietti, B. Zhu, T. Heil, Yu. Jiaguo, S. Cao, Adv. Funct. Mat. 29, 1900093 (2019). https://doi.org/10.1002/adfm.201900093

    Article  CAS  Google Scholar 

  24. Q.-L. Yan, A. Cohen, A.K. Chinnam, N. Petrutik, A. Shlomovich, L. Burstein, M. Gozin, J. Mater. Chem. A 4, 18401 (2016). https://doi.org/10.1039/c6ta08041c

    Article  CAS  Google Scholar 

  25. W. Zhu, H. Song, Y. Lv, Anal. Bioanal. Chem. 410, 7499 (2018). https://doi.org/10.1007/s00216-018-1368-0

    Article  CAS  PubMed  Google Scholar 

  26. L. Shi, L. Liang, F. Wang, J. Ma, J. Sun, Catal Sci. Technol. 4, 3235 (2014). https://doi.org/10.1039/c4cy00411f

    Article  CAS  Google Scholar 

  27. M. Irfan, M. Sevim, Y. Koçak, M. Balci, Ö. Metin, E. Ozensoy, App. Catal. B. Environ. 249, 126 (2019). https://doi.org/10.1016/j.apcatb.2019.02.067

    Article  CAS  Google Scholar 

  28. P. Gibot, F. Schnell, D. Spitzer, Micropor. Mesopor. Mater. 219, 42 (2016). https://doi.org/10.1016/j.micromeso.2015.07.026

    Article  CAS  Google Scholar 

  29. J. Li, Wu. Dandan, J. Iocozzia, Du. Haiwei, X. Liu, Y. Yuan, W. Zhou, Z. Li, Z. Xue, Z. Lin, Angew. Chem. Int. Ed. Engl. 58, 1985 (2019). https://doi.org/10.1002/anie.201813117

    Article  CAS  PubMed  Google Scholar 

  30. T. Diao, W. Wang, Xu. Xuelian, P. Xiao, D. Tang, J. Zhu, Z. Zhao, Z. Phys. Chem. 233, 1035 (2019). https://doi.org/10.1515/zpch-2018-1221

    Article  CAS  Google Scholar 

  31. E. Kroke, M. Schwarz, E. Horath-Bordon, P. Kroll, B. Noll, A.D. Norman, New J. Chem. 26, 508 (2002). https://doi.org/10.1039/b111062b

    Article  CAS  Google Scholar 

  32. S.N. Talapaneni, K. Ramadass, M.R. Benzigar, K.S. Lakhi, J.-H. Yang, U. Ravon, K. Albahily, A. Vinu, Mol. Catal. 477, 110548 (2019). https://doi.org/10.1016/j.mcat.2019.110548

    Article  CAS  Google Scholar 

  33. G. Xiao, Y. Wang, Xu. Shengnan, P. Li, Yu. Chen Yang, Q.S. Jin, Su. Haijia, Chin. J. Chem. Eng. 27, 305 (2019). https://doi.org/10.1016/j.cjche.2018.09.028

    Article  CAS  Google Scholar 

  34. M.A. Wahab, J. Joseph, L. Atanda, U.K. Sultana, J.N. Beltramini, K. Ostrikov, G. Will, A.P. O’Mullane, A. Abdala, ACS. Appl. Energ. Mater. 3, 1439 (2020). https://doi.org/10.1021/acsaem.9b01876

    Article  CAS  Google Scholar 

  35. Lu. Zhang, Q. Liu, Y. Chai, W.-L. Dai, Int J. Hydrogen. Energ. 43, 5591 (2018). https://doi.org/10.1016/j.ijhydene.2018.01.185

    Article  CAS  Google Scholar 

  36. H. Zhou, Y. Shen, J. Huang, B. Liao, Wu. Xianying, Xu. Zhang, Appl. Surf. Sci. 440, 448 (2018). https://doi.org/10.1016/j.apsusc.2017.12.210

    Article  CAS  Google Scholar 

  37. D.A. Erdogan, M. Sevim, E. Kısa, D.B. Emiroglu, M. Karatok, E.I. Vovk, M. Bjerring, Ü. Akbey, Ö. Metin, E. Ozensoy, Top. Catal. 59, 1305 (2016). https://doi.org/10.1007/s11244-016-0654-3

    Article  CAS  Google Scholar 

  38. X. Lin, Du. Haiwei, D. Jiang, P. Zhang, Yu. Zhiwu, H. Bi, Y. Yuan, J. Energy. Chem. 65, 541 (2022). https://doi.org/10.1016/j.jechem.2021.07.002

    Article  Google Scholar 

  39. S.N. Talapaneni, G.P. Mane, A. Mano, C. Anand, D.S. Dhawale, T. Mori, A. Vinu, Chemsuschem 5, 700 (2012). https://doi.org/10.1002/cssc.201100626

    Article  CAS  PubMed  Google Scholar 

  40. H. Lin, Y. Liu, J. Deng, S. Xie, X. Zhao, J. Yang, K. Zhang, Z. Han, H. Dai, J. Photoch. Photobio. A. 336, 105 (2017). https://doi.org/10.1016/j.jphotochem.2016.12.026

    Article  CAS  Google Scholar 

  41. H. Ma, Y. Jia, G. Zhu, F. Zhang, S. Rhee, B. Lee, C. Liu, Appl. Surf. Sci. 507, 144885 (2020). https://doi.org/10.1016/j.apsusc.2019.144885

    Article  CAS  Google Scholar 

  42. Y. Zeng, X. Liu, C. Liu, L. Wang, Y. Xia, S. Zhang, S. Luo, Y. Pei, App. Catal. B. Environ. 224, 1 (2018). https://doi.org/10.1016/j.apcatb.2017.10.042

    Article  CAS  Google Scholar 

  43. Wu. Dandan, Hu. Shaonian, H. Xue, X. Hou, Du. Haiwei, Xu. Gengsheng, Y. Yuan, J. Mater. Chem. A. 7, 20223 (2019). https://doi.org/10.1039/c9ta05135j

    Article  CAS  Google Scholar 

  44. Xu. Jie, J.-K. Shang, Q. Jiang, Y. Wang, Y.-X. Li, RSC. Adv. 6, 55382 (2016). https://doi.org/10.1039/c6ra10509b

    Article  Google Scholar 

  45. L. Shi, L. Liang, F. Wang, M. Liu, J. Sun, Dalton. T. 45, 5815 (2016). https://doi.org/10.1039/c5dt04644k

    Article  CAS  Google Scholar 

  46. G. Zhang, L. Lin, G. Li, Y. Zhang, A. Savateev, S. Zafeiratos, X. Wang, M. Antonietti, Angew. Chem. Int. Ed. Engl. 57, 9372 (2018). https://doi.org/10.1002/anie.201804702

    Article  CAS  PubMed  Google Scholar 

  47. Y.-P. Chang, C.-L. Ren, Qu. Ji-Chun, X.-G. Chen, Appl. Surf. Sci. 261, 504 (2012). https://doi.org/10.1016/j.apsusc.2012.08.045

    Article  CAS  Google Scholar 

  48. P.-H. Chang, Z. Li, W.-T. Jiang, J.-S. Jean, Appl. Clay. Sci. 46, 27 (2009). https://doi.org/10.1016/j.clay.2009.07.002

    Article  CAS  Google Scholar 

  49. X. Yuan, Qu. Senlin, X. Huang, X. Xue, C. Yuan, S. Wang, L. Wei, P. Cai, Chem. Eng. J. 416, 129148 (2021). https://doi.org/10.1016/j.cej.2021.129148

    Article  CAS  Google Scholar 

  50. H.-X. Fang, H. Guo, C.-G. Niu, C. Liang, D.-W. Huang, N. Tang, H.-Y. Liu, Y.-Y. Yang, Lu. Li, Chem. Eng. J. 402, 126185 (2020). https://doi.org/10.1016/j.cej.2020.126185

    Article  CAS  Google Scholar 

  51. C. Ma, S.T.U. Din, W.C. Seo, J. Lee, Y. Kim, H. Jung, W. Yang, Sep. Purif. Technol. 264, 118423 (2021). https://doi.org/10.1016/j.seppur.2021.118423

    Article  CAS  Google Scholar 

  52. J. Guo, L. Jiang, J. Liang, Xu. Weihua, Yu. Hanbo, J. Zhang, S. Ye, W. Xing, X. Yuan, Chemosphere 270, 128651 (2021). https://doi.org/10.1016/j.chemosphere.2020.128651

    Article  CAS  PubMed  Google Scholar 

  53. G. Yang, Y.-A. Zhu, Y. Liang, J. Yang, K. Wang, Z. Zeng, Xu. Rui, X. Xie, Appl. Surf. Sci. 539, 148038 (2021). https://doi.org/10.1016/j.apsusc.2020.148038

    Article  CAS  Google Scholar 

  54. X. Li, T. Hou, L. Yan, L. Shan, X. Meng, Y. Zhao, J. Hazard. Mater. 398, 122884 (2020). https://doi.org/10.1016/j.jhazmat.2020.122884

    Article  CAS  PubMed  Google Scholar 

  55. X. Peng, C. Liu, Z. Zhao, F. Hu, H. Dai, Catal Sci. Technol. 12, 1339 (2022). https://doi.org/10.1039/d1cy01850g

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledged the financial support from the Guangxi Natural Science Foundation (Grant No. 2021GXNSFAA220049 and No. 2018GXNSFBA050008), the Dean Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology (Grant No. 2018K007) and the National Key R&D Program of China (Grant No. 2018YFC1903201).

Funding

We acknowledged the financial support from the Guangxi Natural Science Foundation (Grant No. 2021GXNSFAA220049 and No. 2018GXNSFBA050008), the Dean Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology (Grant No. 2018K007) and the National Key R&D Program of China (Grant No. 2018YFC1903201).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. ZL: Conceptualization, Methodology, Writing-Reviewing & Editing. HD: Investigation, Data Curation, Writing-Original draft preparation. XH: Data Curation, Formal analysis. DW: Supervision. QF: Funding acquisition, Resource and Supervision.

Corresponding authors

Correspondence to Zheng Liu or Qingge Feng.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Ding, H., He, X. et al. Enhanced the Synergistic Effect of Tetracycline Adsorption and Photocatalytic Degradation on a Mesoporous Carbon Nitride. J Inorg Organomet Polym 32, 1567–1581 (2022). https://doi.org/10.1007/s10904-022-02278-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02278-0

Keywords

Navigation