Skip to main content
Log in

Significant enhancement of photocatalytic performance by constructing porous g-C3N4 composed of nanosheets

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Porous g-C3N4 composed of nanosheets (p-gCN-NS) was synthesized through firstly grinding the hydrochloric acid-treated melamine with ammonium chloride (NH4Cl) and then calcining the mixture at 550° C for 2 h. The photocatalytic properties were determined by degrading Rhodamine B (RhB) and tetracycline (TC) aqueous solution (10 mg/L, 100 mL). Results show that the crystallinity, size and thickness of g-C3N4 in p-gCN-NS reduced dramatically compared with those in g-C3N4 sample synthesized without the addition of NH4Cl (gCN). Specific surface area of p-gCN-NS was 63.65 m2·g−1, which was 6.7 times that of gCN. After photocatalysis for 50 min, the degradation rate of RhB achieved 99.32% by p-gCN-NS (100 mg), whose reaction rate constant (k = 0.09317 min−1) was 10.6 times higher than that of gCN. p-gCN-NS also exhibited excellent photocatalytic activity for degrading colorless tetracycline aqueous solution. The significant improvement of photocatalytic performance can be credited to the reduced sized and thickness of g-C3N4, higher specific surface area and pore structure, as well as the weakened recombination rate of photogenerated electron–hole pairs in p-gCN-NS. This work provides a feasible and facile method for synthesis porous g-C3N4 composed of nanosheets with excellent photocatalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. G. Liu, X. Qiao, M.A. Gondal, Y. Liu, K. Shen, Q. Xu, J. Nanosci. Nanotechnol. 18, 4142 (2018)

    CAS  PubMed  Google Scholar 

  2. L. Lei, W. Wang, W. Yu et al., Res. Chem. Intermed. 46, 4673 (2020)

    CAS  Google Scholar 

  3. Y. Chang, Z. Liu, X. Shen, B. Zhu, D.K. Macharia, Z. Chen, L. Zhang, J. Hazard. Mater. 344, 1188 (2018)

    CAS  PubMed  Google Scholar 

  4. H. Xu, Z. Wu, Y. Wang, C. Lin, J. Mater. Sci. 52, 9477 (2017)

    CAS  Google Scholar 

  5. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem Rev. 114(19), 9919 (2014)

    CAS  PubMed  Google Scholar 

  6. J. Yu, J. Lei, L. Wang et al., Res. Chem. Intermed 45, 4237 (2019)

    CAS  Google Scholar 

  7. L. Jing, W.-J. Ong, R. Zhang, E. Pickwell-MacPherson, J.C. Yu, Catal. Today 315, 103 (2018)

    CAS  Google Scholar 

  8. B. Wang, M. Anpo, X. Wang, Adv. Inorg. Chem. 72, 49 (2018)

    Google Scholar 

  9. G. Li, J. Shi, G. Zhang et al., Res Chem Intermed 43, 5137 (2017)

    CAS  Google Scholar 

  10. A. Hayat, Z. Chen, Z. Luo et al., Res Chem Intermed 47, 15 (2021)

    CAS  Google Scholar 

  11. X. Huang, W. Gu, Y. Ma et al., Res. Chem. Intermed. 46, 5133 (2020)

    CAS  Google Scholar 

  12. J. Tian, Q. Liu, C. Ge, Z. Xing, A.M. Asiri, A.O. Al-Youbi, X. Sun, Nanoscale 5, 8921 (2013)

    CAS  PubMed  Google Scholar 

  13. E.I. García-López, Z. Abbasi, F. Di Franco et al., Res. Chem. Intermed. 47, 131 (2021)

    Google Scholar 

  14. F. Chen, M. Yang, X. Shi et al., Res Chem Intermed 49, 101 (2023)

    CAS  Google Scholar 

  15. L. Jiang, X. Yuan, G. Zeng, Z. Wu, J. Liang, X. Chen, L. Leng, H. Wang, H. Wang, Appl. Catal. B-Environ. 221, 715 (2018)

    CAS  Google Scholar 

  16. H. Miao, G. Zhang, X. Hu, J. Mu, T. Han, J. Fan, C. Zhu, L. Song, J. Bai, X. Hou, J. Alloys Compd. 690, 669 (2017)

    CAS  Google Scholar 

  17. P. Wang, C. Guo, S. Hou, X. Zhao, L. Wu, Y. Pei, Y. Zhang, J. Gao, J. Xu, J. Alloys Compd. 769, 503 (2018)

    CAS  Google Scholar 

  18. X. Chen, J. Zhang, X. Fu, M. Antonietti, X. Wang, J. Am. Chem. Soc. 131(33), 11658 (2009)

    CAS  PubMed  Google Scholar 

  19. Q. Zhang, X. Gao, Y. Wang, H. Li, Y. Zhang, Y. Fan, J. Niu, Mater. Sci. Semicond. Process 104, 104689 (2019)

    CAS  Google Scholar 

  20. S. Guo, Z. Deng, M. Li, B. Jiang, C. Tian, Q. Pan, H. Fu, Angew. Chem. Int. Ed. 55, 1830 (2016)

    CAS  Google Scholar 

  21. L. Ge, C. Han, X. Xiao, L. Guo, Y. Li, Mater. Res. Bull. 48, 3919 (2013)

    CAS  Google Scholar 

  22. J. Zhang, X. Chen, K. Takanabe, K. Maeda, K. Domen, J.D. Epping, X. Fu, M. Antonietti, X. Wang, Angew. Chem. Int. Ed. Engl. 49(2), 441 (2010)

    CAS  PubMed  Google Scholar 

  23. T. Yu, Z. Hu, H. Wang, X. Tan, J. Mater. Sci. 55, 2118 (2020)

    CAS  Google Scholar 

  24. H. He, L. Huang, Z. Zhong, S. Tan, Appl. Surf. Sci. 441, 285 (2018)

    CAS  Google Scholar 

  25. T. Song, P. Zhang, T. Wang, A. Ali, H. Zeng, Appl. Catal. B-Environ. 224, 877 (2018)

    CAS  Google Scholar 

  26. S.-W. Bian, Z. Ma, W.-G. Song, J. Phys. Chem. C 113, 8668 (2009)

    CAS  Google Scholar 

  27. Z. Mo, H. Xu, Z. Chen, X. She, Y. Song, J. Wu, P. Yan, L. Xu, Y. Leia, S. Yuan, H. Li, Appl. Catal. B-Environ. 225, 154 (2018)

    CAS  Google Scholar 

  28. J. Liu, J. Huang, H. Zhou, M. Antonietti, ACS Appl. Mater. Interfaces. 6, 8434 (2014)

    CAS  PubMed  Google Scholar 

  29. Q. Liang, Z. Li, Z.-H. Huang, F. Kang, Q.-H. Yang, Adv. Funct. Mater. 25, 6885 (2015)

    CAS  Google Scholar 

  30. G. Li, L. Li, H. Yuan, H. Wang, H. Zeng, J. Shi, J. Colloid Interface Sci. 495, 19 (2017)

    CAS  PubMed  Google Scholar 

  31. H. Huang, K. Xiao, N. Tian, F. Dong, T. Zhang, X. Du, Y. Zhang, J. Mater. Chem. A 5, 17452 (2017)

    CAS  Google Scholar 

  32. D.-F. Li, W.-Q. Huang, L.-R. Zou, A. Pan, G.-F. Huang, J. Nanosci. Nanotechnol. 18, 5502 (2018)

    CAS  PubMed  Google Scholar 

  33. F. Dong, Y. Li, Z. Wang, W.-K. Ho, Appl. Surf. Sci. 358, 393 (2015)

    CAS  Google Scholar 

  34. X. Lu, K. Xu, P. Chen, K. Jia, S. Liu, C. Wu, J. Mater. Chem. A 2, 18924 (2014)

    CAS  Google Scholar 

  35. H. Xu, J. Yan, X. She, L. Xu, J. Xia, Y. Xu, Y. Song, L. Huang, H. Li, Nanoscale 6, 1406 (2014)

    PubMed  Google Scholar 

  36. J. Ma, X. Tan, F. Jiang, T. Yu, Catal. Sci. Technol. 7, 3275 (2017)

    CAS  Google Scholar 

  37. B. Fei, Y. Tang, X. Wang, X. Dong, J. Liang, X. Fei, L. Xu, Y. Song, F. Mater. Res. Bull. 102, 209–217 (2018)

    CAS  Google Scholar 

  38. X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, M. J. Am. Chem. Soc. 131(5), 1680 (2009)

    CAS  PubMed  Google Scholar 

  39. Sun Shiping, Erchuang et al., J. Nanotechnol. 30, 315601 (2019)

    Google Scholar 

  40. L. Huang, Y. Li, H. Xu, Y. Xu, J. Xia, K. Wang, H. Li, X. Cheng, Rsc Adv. 3, 22269 (2013)

    CAS  Google Scholar 

  41. Y. Hong, C. Li, D. Li, Z. Fang, B. Luo, X. Yan, H. Shen, B. Mao, W. Shi, Nanoscale 9, 14103 (2017)

    CAS  PubMed  Google Scholar 

  42. J. Xu, L. Zhang, R. Shi, Y. Zhu, J. Mater. Chem. A 1, 14766 (2013)

    CAS  Google Scholar 

  43. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8(1), 76 (2009)

    CAS  PubMed  Google Scholar 

  44. T.Y. Ma, Y. Tang, S. Dai, S.Z. Qiao, Small 10, 2382 (2014)

    CAS  PubMed  Google Scholar 

  45. J. Yan, C. Zhou, P. Li, B. Chen, S. Zhang, X. Dong, F. Xi, J. Liu, Colloids Surf. Physicochem. Eng. Asp. 508, 257 (2016)

    CAS  Google Scholar 

  46. S. Thaweesak, M. Lyu, P. Peerakiatkhajohn, T. Butburee, B. Luo, H. Chen, L. Wang, Appl. Catal. B-Environm. 202, 184 (2017)

    CAS  Google Scholar 

  47. L. Ma, H. Fan, J. Wang, Y. Zhao, H. Tian, G. Dong, Appl. Catal. B-Environ. 190, 93–102 (2016)

    CAS  Google Scholar 

  48. X.-H. Song, L. Feng, S.-L. Deng, S.-Y. Xie, L.-S. Zheng, Adv. Mater. Interfaces 4(15), 1700339 (2017)

    Google Scholar 

  49. L.J. Fang, Y.H. Li, P.F. Liu, D.P. Wang, H.D. Zeng, X.L. Wang, H.G. Yang, Acs. Sustain. Chem. Eng. 5, 2039 (2017)

    CAS  Google Scholar 

  50. W. Iqbal, B. Qiu, J. Lei, L. Wang, J. Zhang, M. Anpo, Dalton Trans. 46, 10678 (2017)

    CAS  PubMed  Google Scholar 

  51. J. Gao, Y. Wang, S. Zhou, W. Lin, Y. Kong, ChemCatChem 9, 1708 (2017)

    CAS  Google Scholar 

  52. C. Fan, J. Miao, G. Xu, J. Liu, J. Lv, Y. Wu, RSC Adv. 7, 37185 (2017)

    CAS  Google Scholar 

  53. G. Dong, W. Ho, Y. Li, L. Zhang, Appl. Catal. B-Environ. 174, 477 (2015)

    Google Scholar 

  54. Q. Li, M. Anpo, X. Wang, Res. Chem. Intermed. 46, 4325 (2020)

    CAS  Google Scholar 

  55. P. Yang, J. Zhao, W. Qiao, L. Li, Z. Zhu, Nanoscale 7(45), 18887 (2015)

    CAS  PubMed  Google Scholar 

  56. X. Zhang, S.P. Jiang, P. Yang, J. Lumin. 235, 118055 (2021)

    CAS  Google Scholar 

  57. S. Wan, M. Ou, Q. Zhong, S. Zhang, W. Cai, Adv. Opt. Mater. 5, 23 (2017)

    Google Scholar 

  58. Z. Huang, F. Li, B. Chen, G. Yuan, Catal. Sci. Technol. 4, 4258 (2014)

    CAS  Google Scholar 

Download references

Funding

We would like to express our gratitude to Henan Province Natural Science Foundation, China (grant number 212300410407) and the Key Science and Technology Research Project of Henan province, China (grant numbers 182102210005) for their supports to this work.

Author information

Authors and Affiliations

Authors

Contributions

TH and SS were involved in investigation, material preparation, data collection and analysis, and writing the original draft. HX was responsible for conceptualization, methodology, supervision, project administration, review and editing. Han Yu took part in material preparation and data analysis. WC contributed to investigation and methodology. GS, BF, HW and HL participated in methodology and review. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hongliang Xu.

Ethics declarations

Competing interests

There are no conflicts of interest to declare.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 888 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, T., Sun, S., Xu, H. et al. Significant enhancement of photocatalytic performance by constructing porous g-C3N4 composed of nanosheets. Res Chem Intermed 49, 2827–2842 (2023). https://doi.org/10.1007/s11164-023-05030-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05030-6

Keywords

Navigation